scholarly journals All are aromatic: A 3D globally aromatic cage containing five types of 2D aromatic macrocycles

Chem ◽  
2021 ◽  
Author(s):  
Longbin Ren ◽  
Yi Han ◽  
Xudong Hou ◽  
Yong Ni ◽  
Jishan Wu
Keyword(s):  
Author(s):  
Chiara Luise ◽  
Dina Robaa ◽  
Wolfgang Sippl

AbstractSome of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.


Biochemistry ◽  
2021 ◽  
Vol 60 (4) ◽  
pp. 259-273
Author(s):  
Margarita A. Tararina ◽  
Katie K. Dam ◽  
Manaswni Dhingra ◽  
Kim D. Janda ◽  
Bruce A. Palfey ◽  
...  

2021 ◽  
Vol 120 (3) ◽  
pp. 234a
Author(s):  
Emmanuel E. Moutoussamy ◽  
Qaiser Waheed ◽  
Greta Binford ◽  
Matthew Cordes ◽  
Hanif Muhammad Khan ◽  
...  

2014 ◽  
Vol 188 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Marcus D. Hartmann ◽  
Iuliia Boichenko ◽  
Murray Coles ◽  
Fabio Zanini ◽  
Andrei N. Lupas ◽  
...  
Keyword(s):  

2001 ◽  
Vol 117 (4) ◽  
pp. 345-360 ◽  
Author(s):  
Victor A. Panchenko ◽  
Carla R. Glasser ◽  
Mark L. Mayer

The pores of glutamate receptors and K+ channels share sequence homology, suggesting a conserved secondary structure. Scanning mutagenesis with substitution of alanine and tryptophan in GluR6 channels was performed based on the structure of KcsA. Our assay used disruption of voltage-dependent polyamine block to test for changes in the packing of pore-forming regions. Alanine scanning from D567 to R603 revealed reduced rectification resulting from channel block in two regions. A periodic pattern from F575 to M589 aligned with the pore helix in KcsA, whereas a cluster of sensitive positions around Q590, a site regulated by RNA editing, mapped to the selectivity filter in KcsA. Tryptophan scanning from D567 to R603 revealed similar patterns, but with a complete disruption of spermine block for 7 out of the 37 positions and a pM dissociation constant for Q590W. Molecular modeling with KcsA coordinates showed that GluR6 pore helix mutants disrupting polyamine block pack against M1 and M2, and are not exposed in the ion channel pore. In the selectivity filter, tryptophan creates an aromatic cage consistent with the pM dissociation constant for Q590W. A scan with glutamate substitution was used to map the cytoplasmic entrance to the pore based on charge neutralization experiments, which established that E594 was uniquely required for high affinity polyamine block. In E594Q mutants, introduction of glutamate at positions S593–L600 restored polyamine block at positions corresponding to surface-exposed residues in KcsA. Our results reinforce proposals that the pore region of glutamate receptors contains a helix and pore loop analogous to that found in K+ channels. At the cytoplasmic entrance of the channel, a negatively charged amino acid, located in an extended loop with solvent-exposed side chains, is required for high affinity polyamine block and probably attracts cations via a through space electrostatic mechanism.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5908
Author(s):  
Rona R. Ramsay ◽  
Livia Basile ◽  
Antonin Maniquet ◽  
Stefanie Hagenow ◽  
Matteo Pappalardo ◽  
...  

The irreversible inhibitors of monoamine oxidases (MAO) slow neurotransmitter metabolism in depression and neurodegenerative diseases. After oxidation by MAO, hydrazines, cyclopropylamines and propargylamines form a covalent adduct with the flavin cofactor. To assist the design of new compounds to combat neurodegeneration, we have updated the kinetic parameters defining the interaction of these established drugs with human MAO-A and MAO-B and analyzed the required features. The Ki values for binding to MAO-A and molecular models show that selectivity is determined by the initial reversible binding. Common to all the irreversible inhibitor classes, the non-covalent 3D-chemical interactions depend on a H-bond donor and hydrophobic-aromatic features within 5.7 angstroms apart and an ionizable amine. Increasing hydrophobic interactions with the aromatic cage through aryl halogenation is important for stabilizing ligands in the binding site for transformation. Good and poor inactivators were investigated using visible spectroscopy and molecular dynamics. The initial binding, close and correctly oriented to the FAD, is important for the oxidation, specifically at the carbon adjacent to the propargyl group. The molecular dynamics study also provides evidence that retention of the allenyl imine product oriented towards FADH− influences the formation of the covalent adduct essential for effective inactivation of MAO.


2016 ◽  
Vol 113 (35) ◽  
pp. E5108-E5116 ◽  
Author(s):  
Sisi Li ◽  
Linda Yen ◽  
William A. Pastor ◽  
Jonathan B. Johnston ◽  
Jiamu Du ◽  
...  

Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.


Cell Research ◽  
2014 ◽  
Vol 24 (12) ◽  
pp. 1490-1492 ◽  
Author(s):  
Fudong Li ◽  
Debiao Zhao ◽  
Jihui Wu ◽  
Yunyu Shi
Keyword(s):  

2021 ◽  
Author(s):  
Jinhui Dong ◽  
Seth J. Zost ◽  
Allison J. Greaney ◽  
Tyler N. Starr ◽  
Adam S. Dingens ◽  
...  

The SARS-CoV-2 pandemic has led to an urgent need to understand the molecular basis for immune recognition of SARS-CoV-2 spike (S) glycoprotein antigenic sites. To define the genetic and structural basis for SARS-CoV-2 neutralization, we determined the structures of two human monoclonal antibodies COV2-2196 and COV2-21301, which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor binding domain (RBD) of SARS-CoV-2. COV2-2196 forms an “aromatic cage” at the heavy/light chain interface using germline-encoded residues in complementarity determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals1–4. The structure of COV2-2130 reveals that an unusually long LCDR1 and HCDR3 make interactions with the opposite face of the RBD from that of COV2-2196. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the critical residues of both antibodies and identified positions of concern for possible viral escape. Nonetheless, both COV2-2196 and COV2130 showed strong neutralizing activity against SARS-CoV-2 strain with recent variations of concern including E484K, N501Y, and D614G substitutions. These studies reveal germline-encoded antibody features enabling recognition of the RBD and demonstrate the activity of a cocktail like AZD7442 in preventing escape from emerging variant viruses.


2019 ◽  
Author(s):  
Frances Potjewyd ◽  
Anne-Marie W. Turner ◽  
Joshua Beri ◽  
Justin M. Rectenwald ◽  
Jacqueline L. Norris-Drouin ◽  
...  

SUMMARYProtein degradation via the use of bivalent chemical degraders provides an alternative strategy to block protein function and assess the biological roles of putative drug targets. This approach capitalizes on the advantages of small molecule inhibitors while moving beyond the restrictions of traditional pharmacology. Herein we report a first-in-class chemical degrader (UNC6852) that targets Polycomb Repressive Complex 2 (PRC2). UNC6852 contains an EED226 derived ligand and a ligand for VHL which bind to the WD40 aromatic cage of EED and CRL2VHL, respectively, to induce proteasomal degradation of PRC2 components, EED, EZH2, and SUZ12. Degradation of PRC2 with UNC6852 blocks the histone methyltransferase activity of EZH2, decreasing H3K27me3 levels in HeLa cells and diffuse large B-cell lymphoma (DLBCL) cells containing an EZH2Y641N gain-of-function mutation. UNC6852 degrades both wild type EZH2 and EZH2Y641N, and additionally displays anti-proliferative effects in this cancer model system.Abstract Figure


Sign in / Sign up

Export Citation Format

Share Document