yth domain
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Xu ◽  
Kang Hu ◽  
Ping Zhang ◽  
Zhi-Gang Sun ◽  
Nan Zhang

Abstract Background N6-methyladenosine (m6A) is a dynamic and reversible internal RNA structure of eukaryotic mRNA. YTH domain family 2 (YTHDF2), an m6A-specific reader YTH domain family, plays fundamental roles in several types of cancer. However, the function of YTHDF2 in lung squamous cell carcinoma (LUSC) remains elusive. Methods The knockdown and overexpression of YTHDF2 in LUSC cells were conducted to detect the biological characteristics of YTHDF2. In vivo assays, the role of YTHDF2 in tumor growth was further uncovered. In vitro assays, YTHDF2 was confirmed to be involved in activating the mTOR/AKT signaling and YTHDF2 overexpression induced the EMT process in LUSC. Clinically, immunohistochemical staining revealed the relationship between YTHDF2 expression levels and the clinicopathological characteristics of lung squamous cell carcinoma patients. Moreover, quantitative PCR (qPCR), western blot, CCK8 assay, transwell assay, and wound-healing assay were used to detect the expression level and function of YTHDF2 under hypoxia exposure in LUSC cells. Results The results showed that hypoxia-mediated YTHDF2 overexpression promotes cell proliferation and invasion by activating the mTOR/AKT axis, and YTHDF2 overexpression induces the EMT process in LUSC. Moreover, YTHDF2 is closely associated with pN (pN– 37.0%, pN + 73.9%; P = 0.002) and pTNM stage (pI 50.0%, PII 43.3%, pIIIa 80.6%; P = 0.007), ultimately resulting in poor survival for LUSC patients. Conclusion In brief, the results highlight high-YTHDF2 expression predicted a worse prognosis of LUSC, while hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT signaling pathway.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hongxiu Zhou ◽  
Zongren Xu ◽  
Xingyun Liao ◽  
Shiyun Tang ◽  
Na Li ◽  
...  

The N6-methyladenosine (m6A) modification is the most abundant posttranscriptional mRNA modification in mammalian cells and is dynamically modulated by a series of “writers,” “erasers,” and “readers.” Studies have shown that m6A affects RNA metabolism in terms of RNA processing, nuclear export, translation, and decay. However, the role of the m6A modification in retinal microglial activation remains unclear. Here, we analyzed the single-cell RNA sequencing data of retinal cells from mice with uveitis and found that the m6A-binding protein YTH domain-containing 1 (YTHDC1) was significantly downregulated in retinal microglia in the context of uveitis. Further studies showed that YTHDC1 deficiency resulted in M1 microglial polarization, an increased inflammatory response and the promotion of microglial migration. Mechanistically, YTHDC1 maintained sirtuin 1 (SIRT1) mRNA stability, which reduced signal transducer and activator of transcription 3 (STAT3) phosphorylation, thus inhibiting microglial M1 polarization. Collectively, our data show that YTHDC1 is critical for microglial inflammatory response regulation and can serve as a target for the development of therapeutics for autogenic immune diseases.


Author(s):  
Anqi Wu ◽  
Yuhao Hu ◽  
Yao Xu ◽  
Jing Xu ◽  
Xinyue Wang ◽  
...  

Circular RNAs (circRNAs) are highly correlated with the progression and prognosis of hepatocellular carcinoma (HCC). In addition, mounting evidence has revealed that N6-methyladenosine (m6A) methylation, a common RNA modification, is involved in the progression of malignancies. In this research, a novel circRNA, hsa_circ_0058493, was proven to be upregulated in HCC, which was correlated with the prognosis of HCC patients. Experimentally, hsa_circ_0058493 knockdown suppressed the growth and metastasis of HCC cells in vivo and in vitro. On the contrary, the overexpression of hsa_circ_0058493 in HCC cells had the opposite effect in vitro. Mechanistic experiments revealed that hsa_circ_0058493 contained m6A methylation sites and that methyltransferase-like 3 (METTL3) mediated the degree of methylation modification of hsa_circ_0058493. Furthermore, YTH domain-containing protein 1 (YTHDC1) could bind to hsa_circ_0058493 and promote its intracellular localization from the nucleus to the cytoplasm. In addition, both si-METTL3 and si-YTHDC1 suppressed HCC cell growth and metastasis, whereas rescue experiments confirmed that overexpression of hsa_circ_0058493 inverted the inhibitory effects of si-METTL3 and si-YTHDC1 on HCC cells. Taken together, this study explored the oncogenic role of m6A-modified hsa_circ_0058493 and found to accelerate HCC progression via the METTL3-hsa_circ_0058493-YTHDC1 axis, indicating a potential therapeutic target for this deadly disease.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2694
Author(s):  
Liqi Shu ◽  
Xiaoli Huang ◽  
Xuejun Cheng ◽  
Xuekun Li

N6-methyladenosine (m6A), the most abundant modification in messenger RNAs (mRNAs), is deposited by methyltransferases (“writers”) Mettl3 and Mettl14 and erased by demethylases (“erasers”) Fto and Alkbh5. m6A can be recognized by m6A-binding proteins (“readers”), such as Yth domain family proteins (Ythdfs) and Yth domain-containing protein 1 (Ythdc1). Previous studies have indicated that m6A plays an essential function in various fundamental biological processes, including neurogenesis and neuronal development. Dysregulated m6A modification contributes to neurological disorders, including neurodegenerative diseases. In this review, we summarize the current knowledge about the roles of m6A machinery, including writers, erasers, and readers, in regulating gene expression and the function of m6A in neurodevelopment and neurodegeneration. We also discuss the perspectives for studying m6A methylation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura Arribas-Hernández ◽  
Sarah Rennie ◽  
Michael Schon ◽  
Carlotta Porcelli ◽  
Balaji Enugutti ◽  
...  

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3 and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura Arribas-Hernández ◽  
Sarah Rennie ◽  
Tino Köster ◽  
Carlotta Porcelli ◽  
Martin Lewinski ◽  
...  

Specific recognition of N6-methyladenosine (m6A) in mRNA by RNA-binding proteins containing a YT521-B homology (YTH) domain is important in eukaryotic gene regulation. The Arabidopsis YTH-domain protein ECT2 is thought to bind to mRNA at URU(m6A)Y sites, yet RR(m6A)CH is the canonical m6A consensus site in all eukaryotes and ECT2 functions require m6A binding activity. Here, we apply iCLIP (individual-nucleotide resolution cross-linking and immunoprecipitation) and HyperTRIBE (targets of RNA-binding proteins identified by editing) to define high-quality target sets of ECT2, and analyze the patterns of enriched sequence motifs around ECT2 crosslink sites. Our analyses show that ECT2 does in fact bind to RR(m6A)CH. Pyrimidine-rich motifs are enriched around, but not at m6A-sites, reflecting a preference for N6-adenosine methylation of RRACH/GGAU islands in pyrimidine-rich regions. Such motifs, particularly oligo-U and UNUNU upstream of m6A sites, are also implicated in ECT2 binding via its intrinsically disordered region (IDR). Finally, URUAY-type motifs are enriched at ECT2 crosslink sites, but their distinct properties suggest function as sites of competition between binding of ECT2 and as yet unidentified RNA-binding proteins. Our study provides coherence between genetic and molecular studies of m6A-YTH function in plants, and reveals new insight into the mode of RNA recognition by YTH-domain-containing proteins.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kuan Hu ◽  
Lei Yao ◽  
Yuanliang Yan ◽  
Lei Zhou ◽  
Juanni Li

Background. All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. Methods. GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. Results. mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3 with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2, YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was 26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep involvement of the YTH domain family in the immune cell infiltration in LUAD. Conclusion. The molecular and expression profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.


2021 ◽  
Author(s):  
Peter Brodersen ◽  
Laura Arribas-Hernández ◽  
Sarah Rennie ◽  
Michael Schon ◽  
Carlotta Porcelli ◽  
...  

Gene regulation via N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A via a YT521-B homology (YTH) domain. The plant YTH domain proteins ECT2 and ECT3 act genetically redundantly in stimulating cell proliferation during organogenesis, but several fundamental questions regarding their mode of action remain unclear. Here, we use HyperTRIBE (targets of RNA-binding proteins identified by editing) to show that most ECT2 and ECT3 targets overlap, with only few examples of preferential targeting by either of the two proteins. HyperTRIBE in different mutant backgrounds also provides direct views of redundant and specific target interactions of the two proteins. We also show that contrary to conclusions of previous reports, ECT2 does not accumulate in the nucleus. Accordingly, inactivation of ECT2, ECT3 and their surrogate ECT4 does not change patterns of polyadenylation site choice in ECT2/3 target mRNAs, but does lead to lower steady state accumulation of target mRNAs. In addition, mRNA and microRNA expression profiles show indications of stress response activation in ect2/ect3/ect4 mutants, likely via indirect effects. Thus, previous suggestions of control of alternative polyadenylation by ECT2 are not supported by evidence, and ECT2 and ECT3 act largely redundantly to regulate target mRNA, including its abundance, in the cytoplasm.


2021 ◽  
Author(s):  
Peng Xu ◽  
Kang Hu ◽  
Zhi-Gang Sun ◽  
Nan Zhang

Abstract Background N6-methyladenosine (m6A) is a dynamic and reversible internal RNA structure of eukaryotic mRNA. YTH domain family 2 (YTHDF2), an m6A-specific reader YTH domain family, plays fundamental roles in several types of cancer. However, the function of YTHDF2 in lung squamous cell carcinoma (LUSC) remains elusive. Methods Functionally, NCI-H226 and SK-MES-1 cells were exposed to hypoxia to detect the protein levels of hypoxia-inducible factor-1α (HIF-1α), endogenous YTHDF2, and phospho-AKT (Ser473) analyzed by western blotting and then the association of these proteins with LUSC was analyzed with a bioinformatics database. Next, we established stable YTHDF2 upregulation models in NCI-H226 and SK-MES-1 cells to explore the function of YTHDF2 in LUSC cells by performing in vitro and in vivo assays. Finally, we affirmed that YTHDF2 overexpression was involved in activating the mTOR/AKT signaling and inducing the EMT process in LUSC using western blotting. Clinically, immunohistochemical staining revealed the relationship between YTHDF2 expression levels and the clinicopathological characteristics of lung squamous cell carcinoma patients. Results The results showed that hypoxia-mediated YTHDF2, a tumor promoter, promoted cell proliferation and invasion by activating the mTOR/AKT axis and inducing the EMT process in LUSC. Moreover, YTHDF2 was closely associated with pN (pN– 37.0%, pN + 73.9%; P = 0.002) and pTNM stage (pI 50.0%, PII 43.3%, pIIIa 80.6%; P = 0.007), ultimately resulting in poor survival for LUSC patients. Conclusion In brief, the results highlight the critical role of YTHDF2 in both hypoxia exposure and the pathogenesis of LUSC.


Sign in / Sign up

Export Citation Format

Share Document