Classification of design parameters with system modeling and simulation techniques

CIRP Annals ◽  
2014 ◽  
Vol 63 (1) ◽  
pp. 193-196 ◽  
Author(s):  
Hitoshi Komoto ◽  
Keijiro Masui
2020 ◽  
Vol 12 (17) ◽  
pp. 6969
Author(s):  
Simon Gorecki ◽  
Jalal Possik ◽  
Gregory Zacharewicz ◽  
Yves Ducq ◽  
Nicolas Perry

In order to control manufacturing systems, managers need risk and performance evaluation methods and simulation tools. However, these simulation techniques must evolve towards being multiperformance, multiactor, and multisimulation tools, and this requires interoperability between those distributed components. This paper presents an integrated platform that brings interoperability to several simulation components. This work expands the process modeling tool Papyrus to allow it to communicate with external components through both distributed simulation and cosimulation standards. The distributed modeling and simulation framework (DMSF) platform takes its environment into consideration in order to evaluate the sustainability of the system while integrating external heterogeneous components. For instance, a DMSF connection with external IoT devices has been implemented. Moreover, the orchestration of different smart manufacturing components and services is achieved through configurable business models. As a result, an automotive industry case study has successfully been tested to demonstrate the sustainability of smart supply chains and manufacturing factories, allowing better connectivity with their real environments.


2019 ◽  
Vol 24 (43) ◽  
pp. 5175-5180 ◽  
Author(s):  
Jatinder Kaur Mukker ◽  
Ravi Shankar Prasad Singh

The properties of nanoparticles can be exploited to overcome challenges in drug delivery. By virtue of its design and size, the pharmacokinetics of nanoparticles are different than other small molecules. Modeling and simulation techniques have great potential to be used in nanoformulation development; however, their use in optimization of nanoformulation is very limited. This review highlights the differences in absorption, distribution, metabolism and excretion (ADME) characteristics of nanoparticles, use of modeling and simulation techniques in nanoformulation development and challenges in the implementation of modeling techniques.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (5) ◽  
pp. 410-418 ◽  
Author(s):  
Angelo Bongiorno ◽  
Clemens J. Först ◽  
Rajiv K. Kalia ◽  
Ju Li ◽  
Jochen Marschall ◽  
...  

AbstractThe broader context of this discussion, based on a workshop where materials technologists and computational scientists engaged in a dialogue, is an awareness that modeling and simulation techniques and computational capabilities may have matured sufficiently to provide heretofore unavailable insights into the complex microstructural evolution of materials in extreme environments.As an example, this article examines the study of ultrahigh-temperature oxidation-resistant ceramics, through the combination of atomistic simulation and selected experiments.We describe a strategy to investigate oxygen transport through a multi-oxide scale—the protective layer of ultrahigh-temperature ceramic composites ZrB2-SiC and HfB2-SiC—by combining first-principles and atomistic modeling and simulation with selected experiments.


SIMULATION ◽  
1989 ◽  
Vol 52 (4) ◽  
pp. 141-149 ◽  
Author(s):  
François E. Cellier ◽  
C. Magnus Rimvall

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 580
Author(s):  
Danna De Boer ◽  
Nguyet Nguyen ◽  
Jia Mao ◽  
Jessica Moore ◽  
Eric J. Sorin

The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.


Author(s):  
J. Michopoulos ◽  
C. Farhat ◽  
E. Houstis ◽  
P. Tsompanopoulou ◽  
H. Zhang ◽  
...  

2018 ◽  
Vol 16 ◽  
pp. 01007
Author(s):  
Rodolfo A. Fiorini

Science does not exists to enlighten people's minds only. It mainly exists to show the educated way from quanta to qualia. And that way starts from computational competence. In previous papers published elsewhere, we have already shown that traditional Q Arithmetic can be regarded as a highly sophisticated open logic, powerful and flexible bidirectional formal language of languages, according to "Computational Information Conservation Theory" (CICT) new perspective. This new awareness can offer competitive approach to guide more effective and convenient algorithm development and application to arbitrary multiscale (AMS) biomedical system modeling and simulation. An articulated example on function computational modelling is presented and compared to standard, well-known and traditional approach. Results are critically discussed.


Sign in / Sign up

Export Citation Format

Share Document