scholarly journals Flow visualization and simulation of the filling process during injection molding

Author(s):  
Patrick Guerrier ◽  
Guido Tosello ◽  
Jesper Henri Hattel
2016 ◽  
Vol 36 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Quan Wang ◽  
Zhenghuan Wu

Abstract This paper presents a study of the characteristics of axial vibration of a screw in the filling process for a novel dynamic injection molding machine. By simplifying a generalized model of the injection screw, physical and mathematic models are established to describe the dynamic response of the axial vibration of a screw using the method of lumped-mass. The damping coefficient of the screw is calculated in the dynamic filling process. The amplitude-frequency characteristics are analyzed by the simulation and experimental test of polypropylene. The results show that the amplitude of a dynamic injection molding machine is not only is related to structure parameters of the screw and performance of the material, such as non-Newtonian index, but also depends on the processing parameters, such as vibration intensity and injection speed.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Hanxue Cao ◽  
Chao Shen ◽  
Chengcheng Wang ◽  
Hui Xu ◽  
Juanjuan Zhu

Although numerical simulation accuracy makes progress rapidly, it is in an insufficient phase because of complicated phenomena of the filling process and difficulty of experimental verification in high pressure die casting (HPDC), especially in thin-wall complex die-castings. Therefore, in this paper, a flow visualization experiment is conducted, and the porosity at different locations is predicted under three different fast shot velocities. The differences in flow pattern between the actual filling process and the numerical simulation are compared. It shows that the flow visualization experiment can directly observe the actual and real-time filling process and could be an effective experimental verification method for the accuracy of the flow simulation model in HPDC. Moreover, significant differences start to appear in the flow pattern between the actual experiment and the Anycasting solution after the fragment or atomization formation. Finally, the fast shot velocity would determine the position at which the back flow meets the incoming flow. The junction of two streams of fluid would create more porosity than the other location. There is a transition in flow patterns due to drag crisis under high fast shot velocity around two staggered cylinders, which resulted in the porosity relationship also changing from R1 < R3 < R2 (0.88 m/s) to R1 < R2 < R3 (1.59 and 2.34 m/s).


2012 ◽  
Vol 201-202 ◽  
pp. 808-811
Author(s):  
Guo Qiang Zhang ◽  
Mei Ting Xie ◽  
Wen Juan Wang ◽  
Ji Qiang Zhai

Numerical simulation in the printer cover product molding process with gas assisted injection molding was carried out by means of computer aided engineering. The filling process and surface quality were forecasted. The simulation results provide an important reference for the selection in the production process parameters. Compared with the production molding process and the actual product, CAE technology used in actual production and design is entirely feasible.


1991 ◽  
Vol 31 (19) ◽  
pp. 1417-1425 ◽  
Author(s):  
Cheng-Ping Chiu ◽  
Laming-Chang Shih ◽  
Jong-Hwei Wei

Sign in / Sign up

Export Citation Format

Share Document