Time-domain simulation of milling processes including process damping

2020 ◽  
Vol 30 ◽  
pp. 149-156
Author(s):  
B. Denkena ◽  
R. Grabowski ◽  
A. Krödel ◽  
L. Ellersiek
1986 ◽  
Vol 108 (2) ◽  
pp. 59-67 ◽  
Author(s):  
J. Tlusty

This paper is based on previous work of the author and his associates which was published in a series of papers, mainly on those given here as references [2–6], dealing with time domain simulation of chatter in milling, with cutting process damping and with stability lobes. These matters are reevaluated here from the particular point of view of high-speed milling. First, the derivation of limit of stability of chatter in the frequency domain is recapitulated, and lobes of stability explained. These lobes should lead to substantial increases of stability at high speeds of milling. Further, corrections to the results of the simple theory using time domain are presented as they are obtained by time domain simulation which takes into account, in a very realistic way, all the main aspects of milling. It is shown that still, in many instances, high gains of stability are achievable by determining and using a particular spindle speed such that the cutter tooth frequency approaches the frequency of the decisive mode of vibrations as measured on the cutter. The usual modes of vibration of a spindle with a long end mill are discussed, and it is shown how a long end mill stabilizes cutting at medium speeds but becomes a flexible element strongly involved in chatter at higher speeds. In the following section, cutting process damping is discussed which has a very strong stabilizing effect at low speeds but is also partly effective at speeds presently in use. This damping is lost in high-speed milling. Typical cases of high-speed face milling of steel and long end milling of aluminum are discussed and a need of about seven times more stiffness for spindle modes and 14 times more stiffness for the end mill mode derived. The former should be achieved by spindles with larger diameter roller bearings while simultaneously the technology for the design of these spindles running at high speeds must be developed. Present research work shows good promise for this development. For the latter, methods of maximum use of the lobing effect should be developed as well as methods of increasing the damping of the end mill mode.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2015 ◽  
Vol 1092-1093 ◽  
pp. 356-361
Author(s):  
Peng Fei Zhang ◽  
Lian Guang Liu

With the application and development of Power Electronics, HVDC is applied more widely China. However, HVDC system has the possibilities to cause subsynchronous torsional vibration interaction with turbine generator shaft mechanical system. This paper simply introduces the mechanism, analytical methods and suppression measures of subsynchronous oscillation. Then it establishes a power plant model in islanding model using PSCAD, and analyzes the effects of the number and output of generators to SSO, and verifies the effect of SEDC and SSDC using time-domain simulation method. Simulation results show that the more number and output of generators is detrimental to the stable convergence of subsynchronous oscillation, and SEDC、SSDC can restrain unstable SSO, avoid divergence of SSO, ensure the generators and system operate safely and stably


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


Sign in / Sign up

Export Citation Format

Share Document