Dynamics of High-Speed Milling

1986 ◽  
Vol 108 (2) ◽  
pp. 59-67 ◽  
Author(s):  
J. Tlusty

This paper is based on previous work of the author and his associates which was published in a series of papers, mainly on those given here as references [2–6], dealing with time domain simulation of chatter in milling, with cutting process damping and with stability lobes. These matters are reevaluated here from the particular point of view of high-speed milling. First, the derivation of limit of stability of chatter in the frequency domain is recapitulated, and lobes of stability explained. These lobes should lead to substantial increases of stability at high speeds of milling. Further, corrections to the results of the simple theory using time domain are presented as they are obtained by time domain simulation which takes into account, in a very realistic way, all the main aspects of milling. It is shown that still, in many instances, high gains of stability are achievable by determining and using a particular spindle speed such that the cutter tooth frequency approaches the frequency of the decisive mode of vibrations as measured on the cutter. The usual modes of vibration of a spindle with a long end mill are discussed, and it is shown how a long end mill stabilizes cutting at medium speeds but becomes a flexible element strongly involved in chatter at higher speeds. In the following section, cutting process damping is discussed which has a very strong stabilizing effect at low speeds but is also partly effective at speeds presently in use. This damping is lost in high-speed milling. Typical cases of high-speed face milling of steel and long end milling of aluminum are discussed and a need of about seven times more stiffness for spindle modes and 14 times more stiffness for the end mill mode derived. The former should be achieved by spindles with larger diameter roller bearings while simultaneously the technology for the design of these spindles running at high speeds must be developed. Present research work shows good promise for this development. For the latter, methods of maximum use of the lobing effect should be developed as well as methods of increasing the damping of the end mill mode.

2016 ◽  
Vol 693 ◽  
pp. 1503-1508
Author(s):  
Tong Yue Wang ◽  
Q.P. Sun

Vibration has a great influence on the cutting process and it can be detected by many signals. In this work, a set of experiments are conducted on Mikron UCP810 DURO high speed milling center with Fraisa carbide end mill for milling 2A12 aluminum workpiece, an acoustic method is used to detect the milling signals. The captured sound signals are analyzed using Matlab Daubechies5 wavelets with six levels of decomposition, the detail and approximation of the sound signal components are obtained. The analysis results demonstrate the relationship between the signal and the vibration.


2011 ◽  
Vol 188 ◽  
pp. 277-282 ◽  
Author(s):  
Chang Xing Qi ◽  
Bin Jiang ◽  
Min Li Zheng ◽  
Y.J. Yang ◽  
P. Sun

For the instability of ball-end milling cutter in high speed milling, instantaneous cutting process of high speed milling hardened steel was studied. The model of instantaneous cutting layer parameters of high speed ball-end cutter was established, and the influence of cutting speed and inclination angles on instantaneous cutting layer parameters were obtained. Using the model, instantaneous cutting force was studied, and high speed milling experiment was processed. Results show that the increase of cutting speed makes the change rate of cutting layer parameters increasing, leads to the energy concentration in cutting process, and increases the impact on milling cutter. The increase of inclination angle makes the instantaneous cutting layer parameters show a trend of decrease and the decrease of cutting thickness more rapidly, which caused instantaneous unit cutting force to increase and the instantaneous main cutting force appears increasing trend, and the cutting process become unstable.


Author(s):  
Alptunc Comak ◽  
Orkun Ozsahin ◽  
Yusuf Altintas

High-speed machine tools have parts with both stationary and rotating dynamics. While spindle housing, column, and table have stationary dynamics, rotating parts may have both symmetric (i.e., spindle shaft and tool holder) and asymmetric dynamics (i.e., two-fluted end mill) due to uneven geometry in two principal directions. This paper presents a stability model of dynamic milling operations with combined stationary and rotating dynamics. The stationary modes are superposed to two orthogonal directions in rotating frame by considering the time- and speed-dependent, periodic dynamic milling system. The stability of the system is solved in both frequency and semidiscrete time domain. It is shown that the stability pockets differ significantly when the rotating dynamics of the asymmetric tools are considered. The proposed stability model has been experimentally validated in high-speed milling of an aluminum alloy with a two-fluted, asymmetric helical end mill.


2014 ◽  
Vol 621 ◽  
pp. 75-81 ◽  
Author(s):  
You Xi Lin ◽  
Hua Lin ◽  
Zhen Wei Han

High speed cutting is an important means to improve the efficiency and the quality of machining mold steel, but the tool wear is one of the key factors restricting the increase of the cutting speed, leading to higher requirements for cutting tool materials. At present the researches of high-speed cutting of mold steel are mainly on the hardness mold steel, but less on P20 mold steel which hardness is 30-42HRC. This paper mainly studies the effect of cutting speed on wear property of TiAlN PVD coated tools when high-speed milling of P20 mold steels. The experiment was conducted using two different high cutting speeds under dry condition, 320m/min and 500m/min. Wear characterization of the rake and the flank surfaces as well as the collected chips were performed using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was found that at high speeds, the dominant wear mechanisms were oxidation wear and diffusion wear, followed by adhesive wear and melt wear; as the cutting speed increased, the wear surface area of rake face will be closer to the main cutting edge.


1994 ◽  
Vol 42 (12) ◽  
pp. 2562-2571 ◽  
Author(s):  
R. Sanaie ◽  
E. Chiprout ◽  
M.S. Nakhla ◽  
Q.J. Zhang

Sign in / Sign up

Export Citation Format

Share Document