scholarly journals Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer

2020 ◽  
Vol 33 (11) ◽  
pp. 2907-2920
Author(s):  
Wenqiang ZHANG ◽  
Chaoyang DONG ◽  
Maopeng RAN ◽  
Yang LIU
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Meng Duan ◽  
Yingmin Jia

In this paper, the attitude tracking control problem of output feedback is investigated. A finite time extended state observer (FTESO) is designed through the homogeneous Lyapunov method to estimate the virtual angular velocity and total disturbances. Based on these estimated states, a finite time attitude tracking controller is developed. The numerical simulations are given to illustrate the effectiveness of the proposed control scheme.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984465 ◽  
Author(s):  
Chao Chen ◽  
Chengrui Zhang ◽  
Tianliang Hu ◽  
Hepeng Ni ◽  
Qizhi Chen

This article considers finite-time trajectory tracking control problem for robotic manipulators with parameter uncertainties and external disturbances. A finite-time controller that achieves high precision and strong robustness is proposed without the requirement of the exact dynamic model. First, a novel finite-time model-assisted extended state observer is designed to compensate the system uncertainties with complex and uncertain dynamics. Then, a composite finite-time controller is developed for trajectory tracking control with the help of finite-time model-assisted extended state observer. Compared to the classic extended state observer, it is proved that the estimation error of finite-time model-assisted extended state observer can be stabilized in finite time. Meanwhile, the finite-time convergence of the closed-loop system with the proposed controller can also be proved through Lyapunov’s stability theory. A variable structure term is employed to compensate the estimation errors of finite-time model-assisted extended state observer. The validity of the control scheme is demonstrated by simulations and experiments.


Author(s):  
Kejie Gong ◽  
Ying Liao ◽  
Yafei Mei

This article proposed an extended state observer (ESO)–based output feedback control scheme for rigid spacecraft pose tracking without velocity feedback, which accounts for inertial uncertainties, external disturbances, and control input constraints. In this research, the 6-DOF tracking error dynamics is described by the exponential coordinates on SE(3). A novel continuous finite-time ESO is proposed to estimate the velocity information and the compound disturbance, and the estimations are utilized in the control law design. The ESO ensures a finite-time uniform ultimately bounded stability of the observation states, which is proved utilizing the homogeneity method. A non-singular finite-time terminal sliding mode controller based on super-twisting technology is proposed, which would drive spacecraft tracking the desired states. The other two observer-based controllers are also proposed for comparison. The superiorities of the proposed control scheme are demonstrated by theory analyses and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document