scholarly journals Variational Bayesian Kalman filter using natural gradient

Author(s):  
Hu Yumei ◽  
Wang Xuezhi ◽  
Pan Quan ◽  
Hu Zhentao ◽  
Bill Moran
Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 117
Author(s):  
Xuyou Li ◽  
Yanda Guo ◽  
Qingwen Meng

The maximum correntropy Kalman filter (MCKF) is an effective algorithm that was proposed to solve the non-Gaussian filtering problem for linear systems. Compared with the original Kalman filter (KF), the MCKF is a sub-optimal filter with Gaussian correntropy objective function, which has been demonstrated to have excellent robustness to non-Gaussian noise. However, the performance of MCKF is affected by its kernel bandwidth parameter, and a constant kernel bandwidth may lead to severe accuracy degradation in non-stationary noises. In order to solve this problem, the mixture correntropy method is further explored in this work, and an improved maximum mixture correntropy KF (IMMCKF) is proposed. By derivation, the random variables that obey Beta-Bernoulli distribution are taken as intermediate parameters, and a new hierarchical Gaussian state-space model was established. Finally, the unknown mixing probability and state estimation vector at each moment are inferred via a variational Bayesian approach, which provides an effective solution to improve the applicability of MCKFs in non-stationary noises. Performance evaluations demonstrate that the proposed filter significantly improves the existing MCKFs in non-stationary noises.


2021 ◽  
Vol 21 (2) ◽  
pp. 1982-1992
Author(s):  
Jingjing He ◽  
Changku Sun ◽  
Baoshang Zhang ◽  
Peng Wang

2019 ◽  
Vol 9 (9) ◽  
pp. 1726 ◽  
Author(s):  
Jing Hou ◽  
Yan Yang ◽  
He He ◽  
Tian Gao

An accurate state of charge (SOC) estimation is vital for the safe operation and efficient management of lithium-ion batteries. At present, the extended Kalman filter (EKF) can accurately estimate the SOC under the condition of a precise battery model and deterministic noise statistics. However, in practical applications, the battery characteristics change with different operating conditions and the measurement noise statistics may vary with time, resulting in nonoptimal and even unreliable estimation of SOC by EKF. To improve the SOC estimation accuracy under uncertain measurement noise statistics, a variational Bayesian approximation-based adaptive dual extended Kalman filter (VB-ADEKF) is proposed in this paper. The variational Bayesian inference is integrated with the dual EKF (DEKF) to jointly estimate the lithium-ion battery parameters and SOC. Meanwhile, the measurement noise variances are simultaneously estimated in the SOC estimation process to compensate for the model uncertainties, so that the adaptability of the proposed algorithm to dynamic changes in battery characteristics is greatly improved. A constant current discharge test, a pulse current discharge test, and an urban dynamometer driving schedule (UDDS) test are performed to verify the effectiveness and superiority of the proposed algorithm by comparison with the DEKF algorithm. The experimental results show that the proposed VB-ADEKF algorithm outperforms the traditional DEKF algorithm in terms of SOC estimation accuracy, convergence rate, and robustness.


Author(s):  
Chenghao Shan ◽  
Weidong Zhou ◽  
Yefeng Yang ◽  
Zihao Jiang

Aiming at the problem that the performance of Adaptive Kalman filter estimation will be affected when the statistical characteristics of the process and measurement noise matrix are inaccurate and time-varying in the linear Gaussian state-space model, an algorithm of Multi-fading factor and update monitoring strategy adaptive Kalman filter based variational Bayesian is proposed. Inverse Wishart distribution is selected as the measurement noise model, the system state vector and measurement noise covariance matrix are estimated with the variational Bayesian method. The process noise covariance matrix is estimated by the maximum a posteriori principle, and the update monitoring strategy with adjustment factors is used to maintain the positive semi-definite of the updated matrix. The above optimal estimation results are introduced as time-varying parameters into the multiple fading factors to improve the estimation accuracy of the one-step state predicted covariance matrix. The application of the proposed algorithm in target tracking is simulated. The results show that compared with the current filters, the proposed filtering algorithm has better accuracy and convergence performance, and realizes the simultaneous estimation of inaccurate time-varying process and measurement noise covariance matrices.


2018 ◽  
Vol 12 (2) ◽  
pp. 2930-2961 ◽  
Author(s):  
Yann Ollivier

Sign in / Sign up

Export Citation Format

Share Document