An AUV Navigation System Using an Adaptive Error State Kalman Filter Based on Variational Bayesian

Author(s):  
Narjes Davari ◽  
A. Pedro Aguiar ◽  
Joao Borges de Sousa
2015 ◽  
Vol 69 (3) ◽  
pp. 561-581 ◽  
Author(s):  
Mohammad Shabani ◽  
Asghar Gholami

In underwater navigation, the conventional Error State Kalman Filter (ESKF) is used for combining navigation data where due to first order linearization of the nonlinear equations of the dynamics and measurements, considerable error is induced in estimated error state and covariance matrices. This paper presents an underwater integrated inertial navigation system using the unscented filter as an improved nonlinear version of the Kalman filter family. The designed system consists of a strap-down inertial navigation system accompanying Doppler velocity log and depth meter. In the proposed approach, to use the nonlinear capabilities of the unscented filtering approach the integrated navigation system is implemented in a direct approach where the nonlinear total state dynamic and and measurement models are utilised without any linearization. To our knowledge, no results have been reported in the literature on the experimental evaluation of the unscented-based integrated navigation system for underwater vehicles. The performance of the designed system is studied using real measurements. The results of the lake test show that the proposed system estimates the vehicle's position more accurately compared with the conventional ESKF structure.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Bo He ◽  
Zhe Li

The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3809 ◽  
Author(s):  
Yushi Hao ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yulei Wang

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.


Sign in / Sign up

Export Citation Format

Share Document