New soliton solutions for a discrete electrical lattice using the Jacobi elliptical function method

2018 ◽  
Vol 56 (3) ◽  
pp. 1010-1020 ◽  
Author(s):  
E. Tala-Tebue ◽  
Z.I. Djoufack ◽  
S.B. Yamgoué ◽  
A. Kenfack-Jiotsa ◽  
T.C. Kofané
2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
Vol 35 (13) ◽  
pp. 2150168
Author(s):  
Adel Darwish ◽  
Aly R. Seadawy ◽  
Hamdy M. Ahmed ◽  
A. L. Elbably ◽  
Mohammed F. Shehab ◽  
...  

In this paper, we use the improved modified extended tanh-function method to obtain exact solutions for the nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. With the aid of this method, we get many exact solutions like bright and singular solitons, rational, singular periodic, hyperbolic, Jacobi elliptic function and exponential solutions. Moreover, the two-dimensional and the three-dimensional graphs of some solutions are plotted for knowing the physical interpretation.


2014 ◽  
Vol 19 (2) ◽  
pp. 209-224
Author(s):  
Mustafa Inc ◽  
Eda Fendoglu ◽  
Houria Triki ◽  
Anjan Biswas

This paper presents the Drinfel’d–Sokolov system (shortly D(m, n)) in a detailed fashion. The Jacobi’s elliptic function method is employed to extract the cnoidal and snoidal wave solutions. The compacton and solitary pattern solutions are also retrieved. The ansatz method is applied to extract the topological 1-soliton solutions of the D(m, n) with generalized evolution. There are a couple of constraint conditions that will fall out in order to exist the topological soliton solutions.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050317
Author(s):  
K. El-Rashidy ◽  
Aly R. Seadawy

The multi-wave solutions for nonlinear Kundu–Eckhaus (KE) equation are obtained using logarithmic transformation and symbolic computation using the function method. Three-wave method, double exponential and homoclinic breather approach are used to get these solutions. We study the conflict between our results and considerably-known results and state that the solutions reached here are new. By specifying the suitable values for the parameter, the drawings of the solutions obtained are shown in this paper.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950402 ◽  
Author(s):  
Behzad Ghanbari ◽  
J. F. Gómez-Aguilar

In this paper, the generalized exponential rational function method is applied to obtain analytical solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. We obtain novel soliton, traveling waves and kink-type solutions with complex structures. We also present the two- and three-dimensional shapes for the real and imaginary part of the solutions obtained. It is illustrated that generalized exponential rational function method (GERFM) is simple and efficient method to reach the various type of the soliton solutions.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Alvaro H. Salas S ◽  
Cesar A. Gómez S

The general projective Riccati equation method and the Exp-function method are used to construct generalized soliton solutions and periodic solutions to special KdV equation with variable coefficients and forcing term.


2010 ◽  
Vol 65 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Changbum Chun

In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary solutions for the Chaffee-Infante equation with distinct physical structures. The results reveal that the exp-function method is suited for finding travelling wave solutions of nonlinear partial differential equations arising in mathematical physics


2016 ◽  
Vol 71 (2) ◽  
pp. 103-112 ◽  
Author(s):  
E.M.E. Zayed ◽  
Abdul-Ghani Al-Nowehy

AbstractThe modified simple equation method, the exp-function method, and the method of soliton ansatz for solving nonlinear partial differential equations are presented. Based on these three different methods, we obtain the exact solutions and the bright–dark soliton solutions with parameters of the long-short wave resonance equations which describe the resonance interaction between the long wave and the short wave. When these parameters take special values, the solitary wave solutions are derived from the exact solutions. We compare the results obtained using the three methods. Also, a comparison between our results and the well-known results is given.


Sign in / Sign up

Export Citation Format

Share Document