Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers, and Sharma–Tasso–Olver equations

2019 ◽  
Vol 59 ◽  
pp. 372-378 ◽  
Author(s):  
Abdul-Majid Wazwaz
2019 ◽  
Vol 29 (6) ◽  
pp. 2093-2102 ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is concerned with developing two integrable Korteweg de-Vries (KdV) equations of third- and fifth-orders; each possesses time-dependent coefficients. The study shows that multiple soliton solutions exist and multiple complex soliton solutions exist for these two equations. Design/methodology/approach The integrability of each of the developed models has been confirmed by using the Painlev´e analysis. The author uses the complex forms of the simplified Hirota’s method to obtain two fundamentally different sets of solutions, multiple real and multiple complex soliton solutions for each model. Findings The time-dependent KdV equations feature interesting results in propagation of waves and fluid flow. Research limitations/implications The paper presents a new efficient algorithm for constructing time-dependent integrable equations. Practical implications The author develops two time-dependent integrable KdV equations of third- and fifth-order. These models represent more specific data than the constant equations. The author showed that integrable equation gives real and complex soliton solutions. Social implications The work presents useful findings in the propagation of waves. Originality/value The paper presents a new efficient algorithm for constructing time-dependent integrable equations.


2018 ◽  
Vol 28 (11) ◽  
pp. 2681-2687 ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is concerned with developing a (2 + 1)-dimensional Benjamin–Ono equation. The study shows that multiple soliton solutions exist and multiple complex soliton solutions exist for this equation. Design/methodology/approach The proposed model has been handled by using the Hirota’s method. Other techniques were used to obtain traveling wave solutions. Findings The examined extension of the Benjamin–Ono model features interesting results in propagation of waves and fluid flow. Research limitations/implications The paper presents a new efficient algorithm for constructing extended models which give a variety of multiple soliton solutions. Practical implications This work is entirely new and provides new findings, where although the new model gives multiple soliton solutions, it is nonintegrable. Originality/value The work develops two complete sets of multiple soliton solutions, the first set is real solitons, whereas the second set is complex solitons.


2002 ◽  
Vol 22 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Zhibin Li ◽  
Yinping Liu ◽  
Mingliang Wang

2021 ◽  
pp. 2150194
Author(s):  
Zhi-Qiang Li ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang ◽  
Jin-Jie Yang

Based on inverse scattering transformation, a variable-coefficient fifth-order nonlinear Schrödinger equation is studied through the Riemann–Hilbert (RH) approach with zero boundary conditions at infinity, and its multi-soliton solutions with [Formula: see text] distinct arbitrary-order poles are successfully derived. By deriving the eigenfunction and scattering matrix, and revealing their properties, a RH problem (RHP) is constructed based on inverse scattering transformation. Via solving the RHP, the formulae of multi-soliton solutions are displayed when the reflection coefficient possesses [Formula: see text] distinct arbitrary-order poles. Finally, some appropriate parameters are selected to analyze the interaction of multi-soliton solutions graphically.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050045 ◽  
Author(s):  
Naila Nasreen ◽  
Aly R. Seadawy ◽  
Dianchen Lu

The modified Kawahara equation also called Korteweg-de Vries (KdV) equation of fifth-order arises in shallow water wave and capillary gravity water waves. This study is based on the generalized Riccati equation mapping and modified the F-expansion methods. Several types of solitons such as Bright soliton, Dark-lump soliton, combined bright dark solitary waves, have been derived for the modified Kawahara equation. The obtained solutions have significant applications in applied physics and engineering. Moreover, stability of the problem is presented after being examined through linear stability analysis that justify that all solutions are stable. We also present some solution graphically in 3D and 2D that gives easy understanding about physical explanation of the modified Kawahara equation. The calculated work and achieved outcomes depict the power of the present methods. Furthermore, we can solve various other nonlinear problems with the help of simple and effective techniques.


Sign in / Sign up

Export Citation Format

Share Document