Exact Solitary wave and Soliton solutions of the fifth order model equation

2002 ◽  
Vol 22 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Zhibin Li ◽  
Yinping Liu ◽  
Mingliang Wang
2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2021 ◽  
pp. 2150194
Author(s):  
Zhi-Qiang Li ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang ◽  
Jin-Jie Yang

Based on inverse scattering transformation, a variable-coefficient fifth-order nonlinear Schrödinger equation is studied through the Riemann–Hilbert (RH) approach with zero boundary conditions at infinity, and its multi-soliton solutions with [Formula: see text] distinct arbitrary-order poles are successfully derived. By deriving the eigenfunction and scattering matrix, and revealing their properties, a RH problem (RHP) is constructed based on inverse scattering transformation. Via solving the RHP, the formulae of multi-soliton solutions are displayed when the reflection coefficient possesses [Formula: see text] distinct arbitrary-order poles. Finally, some appropriate parameters are selected to analyze the interaction of multi-soliton solutions graphically.


2021 ◽  
pp. 2150413
Author(s):  
Hamdy I. Abdel-Gawad

The ferromagnetism induced by an external magnetic field (EMF), in (3+1) dimensions, is governed by Kraenkel–Manna–Merle system (KMMS). A (1+1) dimension model equation was derived in the literature. The magnetic moments are parallel to the magnetic field in ferromagnetism as they are aligning in the same direction of the external field. Here, it is shown that the KMMS supports the presence of internal magnetic field. This may be argued to medium characteristics. The objective of this work is to mind multiple soliton solutions, which are obtained via the generalized together with extended unified methods. Graphical representation of the results are carried. They describe infinite soliton shapes, which arise from the multiple variation of the arbitrary functions in the solutions. It is, also, shown that internal magnetic field decays, asymptotically, to zero with time.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 381-389
Author(s):  
Attia Rani ◽  
Nawab Khan ◽  
Kamran Ayub ◽  
M. Yaqub Khan ◽  
Qazi Mahmood-Ul-Hassan ◽  
...  

Abstract The solution of nonlinear mathematical models has much importance and in soliton theory its worth has increased. In the present article, we have investigated the Caudrey-Dodd-Gibbon and Pochhammer-Chree equations, to discuss the physics of these equations and to attain soliton solutions. The exp(−ϕ(ζ ))-expansion technique is used to construct solitary wave solutions. A wave transformation is applied to convert the problem into the form of an ordinary differential equation. The drawn-out novel type outcomes play an essential role in the transportation of energy. It is noted that in the study, the approach is extremely reliable and it may be extended to further mathematical models signified mostly in nonlinear differential equations.


Sign in / Sign up

Export Citation Format

Share Document