Platelet bound complement split product (PC4d) is a marker of platelet activation and arterial vascular events in systemic lupus erythematosus

2021 ◽  
pp. 108755
Author(s):  
Yevgeniya Gartshteyn ◽  
Adam Mor ◽  
Daichi Shimbo ◽  
Leila Khalili ◽  
Teja Kapoor ◽  
...  
2004 ◽  
Vol 50 (12) ◽  
pp. 3947-3957 ◽  
Author(s):  
Sergio M. A. Toloza ◽  
América G. Uribe ◽  
Gerald McGwin ◽  
Graciela S. Alarcón ◽  
Barri J. Fessler ◽  
...  

Lupus ◽  
2000 ◽  
Vol 9 (9) ◽  
pp. 672-675 ◽  
Author(s):  
P Rahman ◽  
S Aguero ◽  
D D Gladman ◽  
D Hallett ◽  
M B Urowitz

2020 ◽  
Vol 79 (5) ◽  
pp. 612-617 ◽  
Author(s):  
Konstantinos Tselios ◽  
Dafna D Gladman ◽  
Jiandong Su ◽  
Murray Urowitz

BackgroundThe 2017 American College of Cardiology/American Heart Association guidelines defined hypertension at ≥130/80 mm Hg. Studies on patients with connective tissue diseases were not considered. Our aim was to assess the impact of this definition on atherosclerotic vascular events (AVEs) in systemic lupus erythematosus.Patients methodsIndividuals from the Toronto Lupus Clinic with at least 2 years of follow-up and no prior AVE were divided in three groups according to their mean blood pressure (BP) over that period (≥140/90 mm Hg, 130-139/80-89 mm Hg and <130/80 mm Hg). They were followed until the first occurrence of an AVE (fatal or non-fatal coronary artery disease, cerebrovascular event and peripheral vascular disease) or last visit. Groups were compared as per the baseline atherosclerotic risk factors. A multivariable time-dependent analysis was performed to adjust for the presence of other risk factors.ResultsOf 1532 patients satisfying the inclusion criteria, 155 (10.1%) had a BP ≥140/90 mm Hg, 316 (20.6%) 130–139/80–89 mm Hg and 1061 (69.3%) were normotensives. After a mean follow-up of 10.8 years, 124 AVEs were documented. The incidence rates were 18.9, 11.5 and 4.5 per 1000 patient-years for the three groups, respectively (p=0.0007 between the 130–139/80–89 mm Hg group and the normotensives). A mean BP of 130–139/80–89 mm Hg over the first 2 years was independently associated with the occurrence of AVEs (HR 1.73, 95% CI 1.13 to 2.65, p=0.011).ConclusionPatients with lupus with a sustained mean BP of 130–139/80–89 mm Hg over 2 years had a significantly higher incidence of AVEs compared with normotensive individuals. This BP level should be the target for antihypertensive therapy to minimise their cardiovascular risk.


Blood ◽  
2020 ◽  
Vol 136 (25) ◽  
pp. 2933-2945
Author(s):  
Imene Melki ◽  
Isabelle Allaeys ◽  
Nicolas Tessandier ◽  
Benoit Mailhot ◽  
Nathalie Cloutier ◽  
...  

Abstract Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown. Here, we evaluated the involvement of FcγRIIA in the course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with platelet activation. Because FcγRIIA is absent in mice, and murine platelets do not respond to ICs in any existing mouse model of SLE, we introduced the FcγRIIA (FCGR2A) transgene into the NZB/NZWF1 mouse model of SLE. In mice, FcγRIIA expression by bone marrow cells severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major changes to the platelet transcriptome, both in FcγRIIA-expressing and nonexpressing mice, but enrichment for type I interferon response gene changes was specifically observed in the FcγRIIA mice. Moreover, circulating platelets were degranulated and were found to interact with neutrophils in FcγRIIA-expressing lupus mice. FcγRIIA expression in lupus mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for FcγRIIA in nephritis and in platelet activation in SLE.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e99386 ◽  
Author(s):  
Christian Lood ◽  
Helena Tydén ◽  
Birgitta Gullstrand ◽  
Gunnar Sturfelt ◽  
Andreas Jönsen ◽  
...  

Autoimmunity ◽  
2001 ◽  
Vol 33 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Minori Nagahama ◽  
Shosaku Nomura ◽  
Yoshio Ozakl ◽  
Chie Yoshimura ◽  
Hideo Kagawa ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1141-1141
Author(s):  
Elena Monzón Manzano ◽  
Ihosvany Fernandez-Bello ◽  
Raul Justo Sanz ◽  
Larissa Valor ◽  
Francisco Javier López-Longo ◽  
...  

Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown origin characterized by a hypercoagulable state and a high mortality rate. Mechanisms that cause the accelerated deterioration of cardiovascular health in SLE are unknown. Objectives: to characterize the prothrombotic state in SLE patients by global coagulation assays and the contribution of platelets, endothelial damage, microparticles and neutrophil extracellular traps (NETs) in their prothombotic profile. Material and methods: 72 patients and 90 healthy controls were recruited. Patients were classified according to clinical characteristics in: 32 with lupus (SLE group), 29 with SLE and antiphospholipid antibodies (aFL, SLE+aFL group) and 12 who met the criteria for SLE and antiphospholipid syndrome (APS, SLE+APS group). Experimental protocol was approved by La Paz University Hospital Ethics Committee. Venous blood collected in BD sodium citrate tubes (3.2%) was centrifuged at 150 g for 20 min at 23ºC to obtain platelet-rich plasma (PRP). PPP was obtained by centrifugation at 1500 g for 15 min at 23ºC. To obtain neutrophils, whole blood was centrifuged to 1600 rpm 25 min using a Ficoll gradient and red cells were lysed. Rotational thromboelastometry (ROTEM®) was performed in naTEM condition. Clotting time (CT, time from start of measurement until initiation of clotting [in seconds]); alpha angle (tangent to the curve at 2-mm amplitude [in degrees]), Ax (clot firmness at time x, [in mm]) and maximum clot firmness (MCF, [in mm]) were recorded. Procoagulant activity associated to microparticle's content of tissue factor was determined in PPP by Calibrated Automated Thrombogram (CAT) using MP-reagent (4 mM phospholipids, Diagnostica Stago, Spain). We evaluated the endogenous thrombin potential (ETP, the total amount of thrombin generated over time); the lag time (the time to the beginning of the explosive burst of thrombin generation); the peak height of the curve (the maximum thrombin concentration produced) and the time to the peak. Thrombin generation associated to NETs was also measured by CAT. Neutrophils from healthy controls or from LES patients were stimulated with 100 nM PMA in RPMI medium during 45 min at 37º and then cocultivated with PRP adjusted to 105 platelets/µL. NETs formation was verified by fluorescent microscopy performed with DAPI and an anti-myeloperoxidase antibody. Plasma levels of LDL-ox, E-Selectin and PAI-1 were determined by Elisa (R&D Systems, MN, USA and Affymetrix eBioscience, Vienna, Austria, respectively). Platelet activation was analysed by flow cytometry (FCM, FACScan, BD Biosciences). Fibrinogen receptor activation was evaluated through PAC1-FITC binding and release of granule's content was assessed with monoclonal antibodies (mAbs) anti-CD63 and anti P-selectin in quiescent and 100 µM TRAP and 10 µM ADP stimulated platelets. Data were analysed with Graphpad prism and p ≤0.05 was stablished as statistical significance. Results: PAI-1 plasma level was increased in all patient's groups, whereas LDL-ox and E-selectin showed no differences with control cohort (Fig.1). ROTEM demonstrated a procoagulant profile in SLE and SLE+aPL but not in SLE+APS group (Fig. 2). PAI-1 levels correlated with several ROTEM parameters (Table 1). SLE patients and SLE+aFL showed a basal platelet activation. Moreover, SLE group exposed more P-selectin and CD63 than controls (Fig.3). Regarding thrombin generation associated to tissue-factor content of microparticles, no differences were observed between SLE patients and healthy controls. On the other hand, SLE patients had an increased peak of thrombin generation related to NETs formation (control group: 170.3± 58.0, SLE patients: 230.6±39.3, p=0.019). Conclusions: ROTEM® detected a hypercoagulable state in SLE and SLE+aPL patients. The hypercoagulable state might be linked to increased PAI-1 plasma levels and basal platelet activation in SLE and SLE+aPL groups. Moreover, neutrophils from SLE patients seemed to present a basal activation that induced a NETs-related procoagulant state in these patients. SLE+APS patients did not show a hypercoagulable state perhaps because of the presence of lupus anticoagulant and/or to therapeutic treatment of these patients. This work was supported by grants from the FIS-FONDOS FEDER (PI15/01457, NB). NVB holds a Miguel Servet tenure track grant from FIS-FONDOS FEDER (CP14/00024). Disclosures Fernandez-Bello: Novartis, Pfizer, ROCHE, Stago: Speakers Bureau. Robles:ABBVIE, SANDOZ FARMACEUTICA: Speakers Bureau. Álvarez Roman:Sobi: Consultancy, Speakers Bureau; CSL Behring: Consultancy, Speakers Bureau; Roche: Consultancy, Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; Bayer: Consultancy, Speakers Bureau; Novartis: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Takeda: Research Funding; NovoNordisk: Consultancy, Speakers Bureau. Canales:Celgene: Honoraria; Gilead: Honoraria; Novartis: Honoraria; Janssen: Honoraria, Speakers Bureau; Sandoz: Honoraria; iQone: Honoraria; Takeda: Speakers Bureau; SOBI: Research Funding; Karyopharm: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Speakers Bureau. Jimenez-Yuste:Bayer, CSL Behring, Grifols, Novo Nordisk, Octapharma, Pfizer, Roche, Sobi, Shire: Consultancy, Honoraria, Other: reimbursement for attending symposia/congresses , Research Funding, Speakers Bureau. Butta:Novartis: Consultancy; Roche, Pfizer: Speakers Bureau.


2016 ◽  
Author(s):  
Eric Boilard ◽  
Imene Melki ◽  
Nathalie Cloutier ◽  
Isabelle Allaeys ◽  
Paul R Fortin

1993 ◽  
Vol 12 (1) ◽  
pp. 31-35 ◽  
Author(s):  
E. Röther ◽  
B. Lang ◽  
R. Coldewey ◽  
K. Hartung ◽  
H. H. Peter

Sign in / Sign up

Export Citation Format

Share Document