98. Isolated ring finger palsy due to cortical infarction of the primary motor cortex hand area

2009 ◽  
Vol 120 (1) ◽  
pp. e42
Author(s):  
C. Cornely ◽  
C. Muhl ◽  
J. Himstedt ◽  
S. Isenmann
2020 ◽  
Vol 15 ◽  
pp. 263310552097399
Author(s):  
Julie Savidan ◽  
Marie-Laure Beaud ◽  
Eric M Rouiller

The highly interconnected somatosensory and motor systems are subjected to connectivity changes at close or remote locations following a central nervous system injury. What is the impact of unilateral injury of the primary motor cortex (hand area; MCI) or of the cervical cord (hemisection at C7-C8 level; SCI) on the primary somatosensory (cutaneous) inputs to the dorsal column nuclei (DCN) in adult macaque monkeys? The effects of treatments promoting axonal growth were assessed. In the SCI group (n = 4), 1 monkey received a control antibody and 3 monkeys a combination treatment of anti-Nogo-A antibody and brain-derived neurotrophic factor (BDNF). In the MCI group (n = 4), 2 monkeys were untreated and 2 were treated with the anti-Nogo-A antibody. Using trans-ganglionic transport of cholera toxin B subunit injected in the first 2 fingers and toes on both sides, the areas of axonal terminal fields in the cuneate and gracile nuclei were bilaterally compared. Unilateral SCI at C7-C8 level, encroaching partially on the dorsal funiculus, resulted in an ipsilesional lower extent of the inputs from the toes in the gracile nuclei, not modified by the combined treatment. SCI at C7-C8 level did not affect the bilateral balance of primary inputs to the cuneate nuclei, neither in absence nor in presence of the combined treatment. MCI targeted to the hand area did not impact on the primary inputs to the cuneate nuclei in 2 untreated monkeys. After MCI, the administration of anti-Nogo-A antibody resulted in a slight bilateral asymmetrical extent of cutaneous inputs to the cuneate nuclei, with a larger extent ipsilesionally. Overall, remote effects following MCI or SCI have not been observed at the DCN level, except possibly after MCI and anti-Nogo-A antibody treatment.


2020 ◽  
Vol 30 (12) ◽  
pp. 6254-6269 ◽  
Author(s):  
Nicole Eichert ◽  
Daniel Papp ◽  
Rogier B Mars ◽  
Kate E Watkins

Abstract The representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using functional magnetic resonance imaging and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization—a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.


Author(s):  
Nicole Eichert ◽  
Daniel Papp ◽  
Rogier B. Mars ◽  
Kate E. Watkins

AbstractThe representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using fMRI and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization – a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.


2021 ◽  
Vol 39 (1) ◽  
pp. 23-25
Author(s):  
You-Ri Kang ◽  
Han-Sol Choi ◽  
Hyeon-Joong Park ◽  
Shina Kim ◽  
Kyung-Ho Kang ◽  
...  

Although isolated contralateral tongue deviation following unilateral cortical infarction was occasionally reported, the unilateral lesion usually produces no significant deficit of tongue motility considering bilateral supranuclear innervation of the hypoglossal nerve. We observed a patient with obvious tongue paralysis, including intrinsic muscles, caused by ischemic stroke involving the motor area of the tongue in the primary motor cortex.


Sign in / Sign up

Export Citation Format

Share Document