scholarly journals Isolated Complete Tongue Paralysis as a Manifestation of Focal Cortical Infarction

2021 ◽  
Vol 39 (1) ◽  
pp. 23-25
Author(s):  
You-Ri Kang ◽  
Han-Sol Choi ◽  
Hyeon-Joong Park ◽  
Shina Kim ◽  
Kyung-Ho Kang ◽  
...  

Although isolated contralateral tongue deviation following unilateral cortical infarction was occasionally reported, the unilateral lesion usually produces no significant deficit of tongue motility considering bilateral supranuclear innervation of the hypoglossal nerve. We observed a patient with obvious tongue paralysis, including intrinsic muscles, caused by ischemic stroke involving the motor area of the tongue in the primary motor cortex.

Stroke ◽  
2021 ◽  
Author(s):  
Robert Schulz ◽  
Marlene Bönstrup ◽  
Stephanie Guder ◽  
Jingchun Liu ◽  
Benedikt Frey ◽  
...  

Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shuai Cui ◽  
Shuqi Yao ◽  
Chunxiao Wu ◽  
Lulu Yao ◽  
Peidong Huang ◽  
...  

The descending motor nerve conduction of voluntary swallowing is mainly launched by primary motor cortex (M1). M1 can activate and regulate peripheral nerves (hypoglossal) to control the swallowing. Acupuncture at “Lianquan” acupoint (CV23) has a positive effect against poststroke dysphagia (PSD). In previous work, we have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition. In the present work, we have investigated the effects of EA on the PSD mice in vivo and sought evidence for PSD improvement by electrophysiology recording and laser speckle contrast imaging (LSCI). Four main conclusions can be drawn from our study: (i) EA may enhance the local field potential in noninfarction area of M1, activate the swallowing-related neurons (pyramidal cells), and increase the motor conduction of noninfarction area in voluntary swallowing; (ii) EA may improve the blood flow in both M1 on the healthy side and deglutition muscles and relieve PSD symptoms; (iii) EA could increase the motor conduction velocity (MCV) in hypoglossal nerve, enhance the EMG of mylohyoid muscle, alleviate the paralysis of swallowing muscles, release the substance P, and restore the ability to drink water; and (iv) EA can boost the functional compensation of M1 in the noninfarction side, strengthen the excitatory of hypoglossal nerve, and be involved in the voluntary swallowing neural control to improve PSD. This research provides a timely and necessary experimental evidence of the motor neural regulation in dysphagia after stroke by acupuncture in clinic.


2009 ◽  
Vol 120 (1) ◽  
pp. e42
Author(s):  
C. Cornely ◽  
C. Muhl ◽  
J. Himstedt ◽  
S. Isenmann

1991 ◽  
Vol 8 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Chen Dao-fen ◽  
B. Hyland ◽  
V. Maier ◽  
A. Palmeri ◽  
M. Wiesendanger

NeuroImage ◽  
2019 ◽  
Vol 184 ◽  
pp. 36-44 ◽  
Author(s):  
David M.A. Mehler ◽  
Angharad N. Williams ◽  
Florian Krause ◽  
Michael Lührs ◽  
Richard G. Wise ◽  
...  

2013 ◽  
Vol 6 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Ya-Fang Hsu ◽  
Ying-Zu Huang ◽  
Yung-Yang Lin ◽  
Chih-Wei Tang ◽  
Kwong-Kum Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document