scholarly journals Mapping Human Laryngeal Motor Cortex during Vocalization

2020 ◽  
Vol 30 (12) ◽  
pp. 6254-6269 ◽  
Author(s):  
Nicole Eichert ◽  
Daniel Papp ◽  
Rogier B Mars ◽  
Kate E Watkins

Abstract The representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using functional magnetic resonance imaging and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization—a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.

Author(s):  
Nicole Eichert ◽  
Daniel Papp ◽  
Rogier B. Mars ◽  
Kate E. Watkins

AbstractThe representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using fMRI and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization – a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.


2007 ◽  
Vol 98 (1) ◽  
pp. 414-422 ◽  
Author(s):  
Winston D. Byblow ◽  
James P. Coxon ◽  
Cathy M. Stinear ◽  
Melanie K. Fleming ◽  
Garry Williams ◽  
...  

Coincident hand and foot movements are more reliably performed in the same direction than in opposite directions. Using transcranial magnetic stimulation (TMS) to assess motor cortex function, we examined the physiological basis of these movements across three novel experiments. Experiment 1 demonstrated that upper limb corticomotor excitability changed in a way that facilitated isodirectional movements of the hand and foot, during phasic and isometric muscle activation conditions. Experiment 2 demonstrated that motor cortex inhibition was modified with active, but not passive, foot movement in a manner that facilitated hand movement in the direction of foot movement. Together, these findings demonstrate that the coupling between motor representations within motor cortex is activity dependent. Because there are no known connections between hand and foot areas within primary motor cortex, experiment 3 used a dual-coil paired-pulse TMS protocol to examine functional connectivity between secondary and primary motor areas during active ankle dorsiflexion and plantarflexion. Dorsal premotor cortex (PMd) and supplementary motor area (SMA) conditioning, but not ventral premotor cortex (PMv) conditioning, produced distinct phases of task-dependent modulation of excitability of forearm representations within primary motor cortex (M1). Networks involving PMd–M1 facilitate isodirectional movements of hand and foot, whereas networks involving SMA–M1 facilitate corticomotor pathways nonspecifically, which may help to stabilize posture during interlimb coordination. These results may have implications for targeted neurorehabilitation after stroke.


2003 ◽  
Vol 90 (2) ◽  
pp. 832-842 ◽  
Author(s):  
G. Cerri ◽  
H. Shimazu ◽  
M. A. Maier ◽  
R. N. Lemon

We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70–200 μA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1–2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.


2020 ◽  
Author(s):  
Takeshi Ogawa ◽  
Hideki Shimobayashi ◽  
Jun-ichiro Hirayama ◽  
Motoaki Kawanabe

AbstractBoth imagery and execution of motor controls consist of interactions within a neuronal network, including frontal motor-related regions and posterior parietal regions. To reveal neural representation in the frontoparietal motor network, several approaches have been proposed: one is decoding of actions/modes related to motor control from the spatial pattern of brain activity; another is to estimate effective connectivity, which means a directed association between two brain regions within motor regions. However, a motor network consisting of multiple brain regions has not been investigated to illustrate network representation depending on motor imagery (MI) or motor execution (ME). Here, we attempted to differentiate the frontoparietal motor-related networks based on the effective connectivity in the MI and ME conditions. We developed a delayed sequential movement and imagery (dSMI) task to evoke brain activity associated with data under ME and MI in functional magnetic resonance imaging (fMRI) scanning. We applied a linear non-Gaussian acyclic causal model to identify effective connectivity among the frontoparietal motor-related brain regions for each condition. We demonstrated higher effective connectivity from the contralateral dorsal premotor cortex (dPMC) to the primary motor cortex (M1) in ME than in MI. We mainly identified significant direct effects of dPMC and ventral premotor cortex (vPMC) to the parietal regions. In particular, connectivity from the dPMC to the superior parietal lobule (SPL) in the same hemisphere showed significant positive effects across all conditions. Instead, interlateral connectivities from vPMC to SPL showed significantly negative effects across all conditions. Finally, we found positive effects from A1 to M1 in the same hemisphere, such as the audio motor pathway. These results indicated that sources of motor command originated from d/vPMC and influenced M1 as achievements of ME and MI, and the parietal regions as integration of somatosensory and visual representation during finger tapping. In addition, sequential sounds may functionally facilitate temporal motor processes.


2018 ◽  
Author(s):  
Satoshi Hirose ◽  
Isao Nambu ◽  
Eiichi Naito

AbstractMotor action is prepared in the human brain for rapid initiation at the appropriate time. Recent non-invasive decoding techniques have shown that brain activity for action preparation represents various parameters of an upcoming action. In the present study, we demonstrated that a freely chosen effector can be predicted from brain activity measured using functional magnetic resonance imaging (fMRI) before initiation of the action. Furthermore, the activity was related to response time (RT). We measured brain activity with fMRI while 12 participants performed a finger-tapping task using either the left or right hand, which was freely chosen by them. Using fMRI decoding, we identified brain regions in which activity during the preparatory period could predict the hand used for the upcoming action. We subsequently evaluated the relationship between brain activity and the RT of the upcoming action to determine whether correct decoding was associated with short RT. We observed that activity in the supplementary motor area, dorsal premotor cortex, and primary motor cortex measured before action execution predicted the hand used to perform the action with significantly above-chance accuracy (approximately 70%). Furthermore, in most participants, the RT was shorter in trials for which the used hand was correctly predicted. The present study showed that preparatory activity in cortical motor areas represents information about the effector used for an upcoming action, and that well-formed motor representations in these regions are associated with reduced response times.HighlightsBrain activity measured by fMRI was used to predict freely chosen effectors.M1/PMd and SMA activity predicted the effector hand prior to action initiation.Response time was shorter in trials in which effector hand was correctly predicted.Freely chosen action is represented in the M1/PMd and SMA.Well-formed preparatory motor representations lead to reduced response time.


2015 ◽  
Vol 27 (4) ◽  
pp. 736-751 ◽  
Author(s):  
Ella Gabitov ◽  
David Manor ◽  
Avi Karni

It is not clear how the engagement of motor mnemonic processes is expressed in online brain activity. We scanned participants, using fMRI, during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier (T-FOS), and a similarly constructed, but novel, untrained FOS (U-FOS). Both movement sequences were performed in pairs of blocks separated by a brief rest interval (30 sec). We have recently shown that in the primary motor cortex (M1) motor memory was not expressed in the average signal intensity but rather in the across-block signal modulations, that is, when comparing the first to the second performance block across the brief rest interval. Here, using an M1 seed, we show that for the T-FOS, the M1–striatum functional connectivity decreased across blocks; however, for the U-FOS, connectivity within the M1 and between M1 and striatum increased. In addition, in M1, the pattern of within-block signal change, but not signal variability per se, reliably differentiated the two sequences. Only for the U-FOS and only within the first blocks in each pair, the signal significantly decreased. No such modulation was found within the second corresponding blocks following the brief rest interval in either FOS. We propose that a network including M1 and striatum underlies online motor working memory. This network may promote a transient integrated representation of a new movement sequence and readily retrieves a previously established movement sequence representation. Averaging over single events or blocks may not capture the dynamics of motor representations that occur over multiple timescales.


1998 ◽  
Vol 80 (4) ◽  
pp. 2177-2199 ◽  
Author(s):  
H. van Mier ◽  
L. W. Tempel ◽  
J. S. Perlmutter ◽  
M. E. Raichle ◽  
S. E. Petersen

van Mier, H., L. W. Tempel, J. S. Perlmutter, M. E. Raichle, and S. E. Petersen. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J. Neurophysiol. 80: 2177–2199, 1998. The aim of this study is to assess brain activity measured during continuous performance of design tracing tasks. Three issues were addressed: identification of brain areas involved in performing maze and square tracing tasks, investigation of differences and similarities in these areas related to dominant and nondominant hand performance, and most importantly, examination of the effects of practice in these areas. A total of 32 normal, right-handed subjects were instructed to move a pen with the dominant right hand (16 subjects) or nondominant left hand (16 subjects) continuously through cut-out maze and square patterns with their eyes closed during a 40-s positron emission tomography (PET) scan to measure regional blood flow. There were six conditions: 1) holding the pen on a writing tablet without moving it (rest condition); 2) tracing a maze without practice; 3) tracing the same maze after 10 min of practice; 4) tracing a novel maze; and tracing an easily learned square design at 5) high or 6) low speed. To identify brain areas generally related to continuous tracing, data analyses were performed on the combined data acquired during the five tracing scans minus rest conditions. Areas activated included: primary and secondary motor areas, somatosensory, parietal, and inferior frontal cortex, thalamus, and several cerebellar regions. Then comparisons were made between right- and left-hand performance. There were no significant differences in performance. As for brain activations, only primary motor cortex and anterior cerebellum showed activations that switched with hand of performance. All other areas, with the exception of the midbrain, showed activations that were common for both right- and left-hand performance. These areas were further analyzed for significant conditional effects. We found patterns of activation related to velocity in the contralateral primary motor cortex, related to unskilled performance in right premotor and parietal areas and left cerebellum, related to skilled performance in supplementary motor area (SMA), and related to the level of capacity at which subjects were performing in left premotor cortex, ipsilateral anterior cerebellum, right posterior cerebellum and right dentate nucleus. These findings demonstrate two important principles: 1) practice produces a shift in activity from one set of areas to a different area and 2) practice-related activations appeared in the same hemisphere regardless of the hand used, suggesting that some of the areas related to maze learning must code information at an abstract level that is distinct from the motor performance of the task itself.


2003 ◽  
Vol 89 (6) ◽  
pp. 3205-3214 ◽  
Author(s):  
S. B. Frost ◽  
S. Barbay ◽  
K. M. Friel ◽  
E. J. Plautz ◽  
R. J. Nudo

Although recent neurological research has shed light on the brain's mechanisms of self-repair after stroke, the role that intact tissue plays in recovery is still obscure. To explore these mechanisms further, we used microelectrode stimulation techniques to examine functional remodeling in cerebral cortex after an ischemic infarct in the hand representation of primary motor cortex in five adult squirrel monkeys. Hand preference and the motor skill of both hands were assessed periodically on a pellet retrieval task for 3 mo postinfarct. Initial postinfarct motor impairment of the contralateral hand was evident in each animal, followed by a gradual improvement in performance over 1–3 mo. Intracortical microstimulation mapping at 12 wk after infarct revealed substantial enlargements of the hand representation in a remote cortical area, the ventral premotor cortex. Increases ranged from 7.2 to 53.8% relative to the preinfarct ventral premotor hand area, with a mean increase of 36.0 ± 20.8%. This enlargement was proportional to the amount of hand representation destroyed in primary motor cortex. That is, greater sparing of the M1 hand area resulted in less expansion of the ventral premotor cortex hand area. These results suggest that neurophysiologic reorganization of remote cortical areas occurs in response to cortical injury and that the greater the damage to reciprocal intracortical pathways, the greater the plasticity in intact areas. Reorganization in intact tissue may provide a neural substrate for adaptive motor behavior and play a critical role in postinjury recovery of function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martje G. Pauly ◽  
Annika Steinmeier ◽  
Christina Bolte ◽  
Feline Hamami ◽  
Elinor Tzvi ◽  
...  

AbstractNon-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.


Sign in / Sign up

Export Citation Format

Share Document