Axial perturbations evoke increased postural reflexes in Parkinson’s disease with postural instability

2020 ◽  
Vol 131 (4) ◽  
pp. 928-935
Author(s):  
James G. Colebatch ◽  
Sendhil Govender
2011 ◽  
Vol 18 (2) ◽  
pp. 260-265 ◽  
Author(s):  
R. K. Y. Chong ◽  
J. Morgan ◽  
S. H. Mehta ◽  
I. Pawlikowska ◽  
P. Hall ◽  
...  

2014 ◽  
Vol 72 (8) ◽  
pp. 633-635 ◽  
Author(s):  
Hélio Afonso Ghizoni Teive ◽  
Renato Puppi Munhoz

The authors present the original Charcot’s description of postural instability in Parkinson’s disease as well as the evolution of this sign after 120 years of Charcot’s death.


2005 ◽  
Vol 193 (2) ◽  
pp. 504-521 ◽  
Author(s):  
Fay B. Horak ◽  
Diana Dimitrova ◽  
John G. Nutt

Author(s):  
Diego Orcioli-Silva ◽  
Rodrigo Vitório ◽  
Victor Spiandor Beretta ◽  
Núbia Ribeiro da Conceição ◽  
Priscila Nóbrega-Sousa ◽  
...  

Abstract Parkinson’s disease (PD) is often classified into tremor dominant (TD) and postural instability gait disorder (PIGD) subtypes. Degeneration of subcortical/cortical pathways is different between PD subtypes, which leads to differences in motor behavior. However, the influence of PD subtype on cortical activity during walking remains poorly understood. Therefore, we aimed to investigate the influence of PD motor subtypes on cortical activity during unobstructed walking and obstacle avoidance. Seventeen PIGD and 19 TD patients performed unobstructed walking and obstacle avoidance conditions. Brain activity was measured using a mobile functional near-infrared spectroscopy–electroencephalography (EEG) systems, and gait parameters were analyzed using an electronic carpet. Concentrations of oxygenated hemoglobin (HbO2) of the prefrontal cortex (PFC) and EEG absolute power from alpha, beta, and gamma bands in FCz, Cz, CPz, and Oz channels were calculated. These EEG channels correspond to supplementary motor area, primary motor cortex, posterior parietal cortex, and visual cortex, respectively. Postural instability gait disorder patients presented higher PFC activity than TD patients, regardless of the walking condition. Tremor dominant patients presented reduced beta power in the Cz channel during obstacle avoidance compared to unobstructed walking. Both TD and PIGD patients decreased alpha and beta power in the FCz and CPz channels. In conclusion, PIGD patients need to recruit additional cognitive resources from the PFC for walking. Both TD and PIGD patients presented changes in the activation of brain areas related to motor/sensorimotor areas in order to maintain balance control during obstacle avoidance, being that TD patients presented further changes in the motor area (Cz channel) to avoid obstacles.


2020 ◽  
Vol 10 (4) ◽  
pp. 1301-1314
Author(s):  
Joana Beisl Ramos ◽  
Gonçalo S. Duarte ◽  
Raquel Bouça-Machado ◽  
Margherita Fabbri ◽  
Tiago A. Mestre ◽  
...  

Background: Parkinson’s disease (PD) is a neurological condition characterized by the development of daily disabling symptoms. Although the architecture and design of a PD patient’s environment can hinder or facilitate full participation in daily activities, their putative role in the management of these patients has received little attention to date. Objective: We conducted a systematic review to evaluate the evidence of architectural and design features in the management of people with PD. Methods: An electronic database search of observational and experimental studies was conducted in MEDLINE and Embase from inception to May 2020, with two independent reviewers identifying the studies. Falls, fear of falling, postural instability, gait impairment/disability, and functional mobility were our outcomes of interest. Results: Thirty-six studies were included, among which nineteen were observational and seventeen were experimental studies (overall participants = 2,965). Pavement characteristics, notably unstable surfaces and level differences, were found to be a major cause of falling. Ground-based obstacles and confined/narrowed spaces were found to disturb gait, increase postural instability, and decrease functional mobility. Housing type did not appear to increase risk of falling, nor to significantly explain concerns about falling. Conclusion: Findings suggest a need to adjust architectural features of the surrounding space to ensure appropriate care and provide a safe environment to PD patients. More evidence about the impact of such modifications on PD outcomes is needed.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Javier Ricardo Pérez-Sánchez ◽  
Francisco Grandas

Postural instability in Parkinson’s disease (PD) is commonly assessed by the pull test. This clinical test may be biased by the variability of the pull force applied. Our objective was to study the postural responses elicited by reproducible pull forces in healthy subjects and PD patients at different stages of the disease. We performed a multimodal approach that included a systematic analysis of the pull force needed to reach the backward limit of stability (FBLoS) assessed by mechanically produced forces, the displacements of the center of pressure (CoP) recorded on a force platform, and the latencies and patterns of activation of the stabilizing muscles. Comparisons between groups were performed by univariate and multivariate statistical analyses. Sixty-four healthy subjects and 32 PD patients, 22 Hoehn–Yahr (H–Y) stages I-II and 10 H–Y stage III, were studied. In healthy subjects, FBLoS decreased with aging and was lower in females. Mean (SD) FBLoS was 98.1 (48.9) Newtons (N) in healthy subjects, 70.5 (39.8) N in PD patients H–Y stages I-II, and 37.7 (18.9) N in PD patients H–Y stage III. Compared to healthy subjects and when adjusted for age and gender, PD patients H–Y stages I-II exhibited the following: (a) a reduced FBLoS; (b) larger CoP displacements and higher velocities for the same applied force; and (c) combined ankle and hip strategies elicited by less intense pull forces. All of these abnormalities were more pronounced in H–Y stage III PD patients compared to H–Y stages I-II PD patients. In conclusion, patients in the early stages of PD already exhibit a degree of postural instability due to inefficient postural adjustments, and they can more easily be destabilized by small perturbations than healthy subjects. This balance impairment becomes more pronounced in more advanced PD. In the pull test, pull force to step back should be a variable to consider when testing balance in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document