Glycaemic response at night is improved after eating a high protein meal compared with a standard meal: A cross-over study

2020 ◽  
Vol 39 (5) ◽  
pp. 1510-1516 ◽  
Author(s):  
Rochelle Davis ◽  
Maxine P. Bonham ◽  
Kay Nguo ◽  
Catherine E. Huggins
Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Camila L. P. Oliveira ◽  
Normand G. Boulé ◽  
Aloys Berg ◽  
Arya M. Sharma ◽  
Sarah A. Elliott ◽  
...  

The aim of this study was to compare the impact of a high-protein meal replacement (HP-MR) versus a control (CON) breakfast on exercise metabolism. In this acute, randomized controlled, cross-over study, participants were allocated into two isocaloric arms: (a) HP-MR: 30% carbohydrate, 43% protein, and 27% fat; (b) CON: 55% carbohydrate, 15% protein, and 30% fat. Following breakfast, participants performed a moderate-intensity aerobic exercise while inside a whole-body calorimetry unit. Energy expenditure, macronutrient oxidation, appetite sensations, and metabolic blood markers were assessed. Forty-three healthy, normal-weight adults (24 males) participated. Compared to the CON breakfast, the HP-MR produced higher fat oxidation (1.07 ± 0.33 g/session; p = 0.003) and lower carbohydrate oxidation (−2.32 ± 0.98 g/session; p = 0.023) and respiratory exchange ratio (−0.01 ± 0.00; p = 0.003) during exercise. After exercise, increases in hunger were lower during the HP-MR condition. Changes in blood markers from the fasting state to post-exercise during the HP-MR condition were greater for insulin, peptide tyrosine-tyrosine, and glucagon-like peptide 1, and lower for low-density lipoprotein cholesterol, triglyceride, and glycerol. Our primary findings were that an HP-MR produced higher fat oxidation during the exercise session, suppression of hunger, and improved metabolic profile after it.


1988 ◽  
Vol 75 (2) ◽  
pp. 151-157 ◽  
Author(s):  
L. R. Solomon ◽  
J. C. Atherton ◽  
H. Bobinski ◽  
S. L. Cottam ◽  
C. Gray ◽  
...  

1. The effect of meals with a high and low protein content and of the fasting state on renal function and plasma atrial natriuretic peptide was studied in water-loaded normal volunteers. 2. Creatinine clearance increased after the high protein meal, but did not change after the low protein meal or while fasting. Observations of similar increases in urine sodium and potassium excretion and a transient decrease in urine flow after both meals suggest that the protein content of the meal is not an important contributory factor in these responses to feeding. 3. Absolute delivery of sodium and water out of the proximal tubules (assessed by the lithium clearance method) was higher after both meals than while fasting; fractional lithium clearance was higher after the low protein meal than the high protein meal and while fasting. Absolute reabsorption from proximal tubules was increased after only the high protein meal. 4. A transient decrease in the fraction of water delivered to distal nephron segments that appeared in the urine (fractional distal water excretion) was observed after both meals. Fractional distal sodium excretion and absolute distal sodium and water reabsorption increased after both meals. 5. Since plasma atrial natriuretic peptide either decreased (high protein meal) or remained unchanged (low protein meal and fasting), it is unlikely that this hormone is involved in the hyperfiltration after the high protein meal and the natriuresis after both high and low protein meals.


1986 ◽  
Vol 21 (3) ◽  
pp. 337-338 ◽  
Author(s):  
BG Woodcock ◽  
N. Kraemer ◽  
N. Rietbrock

1992 ◽  
Vol 283 (2) ◽  
pp. 441-447 ◽  
Author(s):  
H S Ewart ◽  
M Jois ◽  
J T Brosnan

Glycine catabolism was studied in isolated rat liver mitochondria by measuring the release of 14CO2 from [1-14C]glycine. Mitochondria isolated from rats fed on a high-protein (60% casein) diet for 5 days showed an enhanced ability to catabolize glycine compared with mitochondria from rats fed on a normal-protein (15% casein) diet. Glycine catabolism was also stimulated in normal protein-fed rats if they ingested a single high-protein meal for 2 h before being killed, thus illustrating the rapid response of the glycine-cleavage system to protein intake. The stimulation of glycine catabolism in rats given a high-protein diet or meal was not evident if the mitochondria were incubated in the absence of P(i) (omitting ADP had no effect on the rate). Mitochondria from high-protein- and normal-protein-fed rats did not differ in their ability to accumulate glycine, a process which occurred far too rapidly to impose a limit on the rate of flux through the glycine-cleavage system. The stimulation of glycine catabolism by high-protein feeding was not associated with a change in mitochondrial matrix volume. Furthermore, mitochondria from rats fed on a high-protein meal maintained an enhanced ability to catabolize glycine compared with those from rats fed on a normal-protein meal when incubated in hypo-osmotic solutions of very low osmolarity. When mitochondria from high-protein- or normal-protein-fed rats were maximally activated by incubation in the presence of 0.25 microM-Ca2+, the rates of glycine catabolism were high, but similar, showing that the stimulation of glycine catabolism by high-protein feeding does not involve an increase in the total capacity of the system. These findings show that hepatic glycine catabolism is stimulated rapidly by high-protein feeding, a response that we suggest is involved in the disposal of the excess glycine in the diet.


Epilepsia ◽  
1997 ◽  
Vol 38 (10) ◽  
pp. 1140-1142 ◽  
Author(s):  
P. Benetello ◽  
M. Furlanut ◽  
M. Fortunato ◽  
M. Barldo ◽  
F. Pea ◽  
...  

2012 ◽  
Vol 113 (3) ◽  
pp. 691-702 ◽  
Author(s):  
Keyne Charlot ◽  
Aurélien Pichon ◽  
Jean-Paul Richalet ◽  
Didier Chapelot

2020 ◽  
Vol 150 (9) ◽  
pp. 2346-2352 ◽  
Author(s):  
Nikkie van der Wielen ◽  
Nadezda V Khodorova ◽  
Walter J J Gerrits ◽  
Claire Gaudichon ◽  
Juliane Calvez ◽  
...  

ABSTRACT Background Assessment of amino acid bioavailability is of key importance for the evaluation of protein quality; however, measuring ileal digestibility of dietary proteins in humans is challenging. Therefore, a less-invasive dual stable isotope tracer approach was developed. Objective We aimed to test the assumption that the 15N:13C enrichment ratio in the blood increases proportionally to the quantity ingested by applying different quantities of 15N test protein. Methods In a crossover design, 10 healthy adults were given a semi-liquid mixed meal containing 25 g (low protein) or 50 g (high protein) of 15N-labeled milk protein concentrate simultaneous with 0.4 g of highly 13C–enriched spirulina. The meal was distributed over multiple small portions, frequently provided every 20 min during a period of 160 min. For several amino acids, the blood 15N- related to 13C-isotopic enrichment ratio was determined at t = 0, 30, 60, 90, 120, 180, 240, 300, and 360 min and differences between the 2 meals were compared using paired analyses. Results No differences in 13C AUC for each of the measured amino acids in serum was observed when ingesting a low- or high-protein meal, whereas 15N AUC of amino acids was ∼2 times larger on the high-protein meal (P < 0.001). Doubling the intake of 15N-labeled amino acids increased the 15N:13C ratio by a factor of 2.04 ± 0.445 for lysine and a factor between 1.8 and 2.2 for other analyzed amino acids, with only phenylalanine (2.26), methionine (2.48), and tryptophan (3.02) outside this range. Conclusions The amino acid 15N:13C enrichment ratio in the peripheral circulation increased proportionally to the quantity of 15N-labeled milk protein ingested, especially for lysine, in healthy adults. However, when using 15N-labeled protein, correction for, e.g., α-carbon 15N atom transamination is advised for determination of bioavailability of individual amino acids. This trial was registered at www.clinicaltrials.gov as NCT02966704.


Sign in / Sign up

Export Citation Format

Share Document