Topology optimization of incompressible media using mixed finite elements

2007 ◽  
Vol 196 (33-34) ◽  
pp. 3151-3164 ◽  
Author(s):  
Matteo Bruggi ◽  
Paolo Venini
1996 ◽  
Vol 75 (2) ◽  
pp. 153-174 ◽  
Author(s):  
Ulrich Brink ◽  
Carsten Carstensen ◽  
Erwin Stein

1997 ◽  
Vol 07 (07) ◽  
pp. 935-955 ◽  
Author(s):  
Ansgar Jüngel ◽  
Paola Pietra

A discretization scheme based on exponential fitting mixed finite elements is developed for the quasi-hydrodynamic (or nonlinear drift–diffusion) model for semiconductors. The diffusion terms are nonlinear and of degenerate type. The presented two-dimensional scheme maintains the good features already shown by the mixed finite elements methods in the discretization of the standard isothermal drift–diffusion equations (mainly, current conservation and good approximation of sharp shapes). Moreover, it deals with the possible formation of vacuum sets. Several numerical tests show the robustness of the method and illustrate the most important novelties of the model.


2012 ◽  
Vol 16 (4) ◽  
pp. 1101-1124 ◽  
Author(s):  
Shuyu Sun ◽  
Abbas Firoozabadi ◽  
Jisheng Kou

Author(s):  
Ashraf O. Nassef

Auxetic structures are ones, which exhibit an in-plane negative Poisson ratio behavior. Such structures can be obtained by specially designed honeycombs or by specially designed composites. The design of such honeycombs and composites has been tackled using a combination of optimization and finite elements analysis. Since, there is a tradeoff between the Poisson ratio of such structures and their elastic modulus, it might not be possible to attain a desired value for both properties simultaneously. The presented work approaches the problem using evolutionary multiobjective optimization to produce several designs rather than one. The algorithm provides the designs that lie on the tradeoff frontier between both properties.


Sign in / Sign up

Export Citation Format

Share Document