Explicit second order isogeometric discretizations for acoustic wave problems

2019 ◽  
Vol 348 ◽  
pp. 776-795 ◽  
Author(s):  
Elena Zampieri ◽  
Luca F. Pavarino
Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T175-T193 ◽  
Author(s):  
Enjiang Wang ◽  
Jing Ba ◽  
Yang Liu

It has been proved that the implicit spatial finite-difference (FD) method can obtain higher accuracy than explicit FD by using an even smaller operator length. However, when only second-order FD in time is used, the combined FD scheme is prone to temporal dispersion and easily becomes unstable when a relatively large time step is used. The time-space domain FD can suppress the temporal dispersion. However, because the spatial derivatives are solved explicitly, the method suffers from spatial dispersion and a large spatial operator length has to be adopted. We have developed two effective time-space-domain implicit FD methods for modeling 2D and 3D acoustic wave equations. First, the high-order FD is incorporated into the discretization for the second-order temporal derivative, and it is combined with the implicit spatial FD. The plane-wave analysis method is used to derive the time-space-domain dispersion relations, and two novel methods are proposed to determine the spatial and temporal FD coefficients in the joint time-space domain. First, we fix the implicit spatial FD coefficients and derive the quadratic convex objective function with respect to temporal FD coefficients. The optimal temporal FD coefficients are obtained by using the linear least-squares method. After obtaining the temporal FD coefficients, the SolvOpt nonlinear algorithm is applied to solve the nonquadratic optimization problem and obtain the optimized temporal and spatial FD coefficients simultaneously. The dispersion analysis, stability analysis, and modeling examples validate that the proposed schemes effectively increase the modeling accuracy and improve the stability conditions of the traditional implicit schemes. The computational efficiency is increased because the schemes can adopt larger time steps with little loss of spatial accuracy. To reduce the memory requirement and computational time for storing and calculating the FD coefficients, we have developed the representative velocity strategy, which only computes and stores the FD coefficients at several selected velocities. The modeling result of the 2D complicated model proves that the representative velocity strategy effectively reduces the memory requirements and computational time without decreasing the accuracy significantly when a proper velocity interval is used.


2014 ◽  
Vol 45 (2) ◽  
pp. 94-104 ◽  
Author(s):  
Sanyi Yuan ◽  
Shangxu Wang ◽  
Wenju Sun ◽  
Lina Miao ◽  
Zhenhua Li

Sign in / Sign up

Export Citation Format

Share Document