Time-space-domain implicit finite-difference methods for modeling acoustic wave equations

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T175-T193 ◽  
Author(s):  
Enjiang Wang ◽  
Jing Ba ◽  
Yang Liu

It has been proved that the implicit spatial finite-difference (FD) method can obtain higher accuracy than explicit FD by using an even smaller operator length. However, when only second-order FD in time is used, the combined FD scheme is prone to temporal dispersion and easily becomes unstable when a relatively large time step is used. The time-space domain FD can suppress the temporal dispersion. However, because the spatial derivatives are solved explicitly, the method suffers from spatial dispersion and a large spatial operator length has to be adopted. We have developed two effective time-space-domain implicit FD methods for modeling 2D and 3D acoustic wave equations. First, the high-order FD is incorporated into the discretization for the second-order temporal derivative, and it is combined with the implicit spatial FD. The plane-wave analysis method is used to derive the time-space-domain dispersion relations, and two novel methods are proposed to determine the spatial and temporal FD coefficients in the joint time-space domain. First, we fix the implicit spatial FD coefficients and derive the quadratic convex objective function with respect to temporal FD coefficients. The optimal temporal FD coefficients are obtained by using the linear least-squares method. After obtaining the temporal FD coefficients, the SolvOpt nonlinear algorithm is applied to solve the nonquadratic optimization problem and obtain the optimized temporal and spatial FD coefficients simultaneously. The dispersion analysis, stability analysis, and modeling examples validate that the proposed schemes effectively increase the modeling accuracy and improve the stability conditions of the traditional implicit schemes. The computational efficiency is increased because the schemes can adopt larger time steps with little loss of spatial accuracy. To reduce the memory requirement and computational time for storing and calculating the FD coefficients, we have developed the representative velocity strategy, which only computes and stores the FD coefficients at several selected velocities. The modeling result of the 2D complicated model proves that the representative velocity strategy effectively reduces the memory requirements and computational time without decreasing the accuracy significantly when a proper velocity interval is used.

Geophysics ◽  
2021 ◽  
pp. 1-83
Author(s):  
Navid Amini ◽  
Changsoo Shin ◽  
Jaejoon Lee

We propose compact implicit finite-difference (FD) schemes in time-space domain based on second-order FD approximation for accurate solution of the acoustic wave equation in 1D, 2D, and 3D. Our method is based on weighted linear combination of the second-order FD operators with different spatial orientations to mitigate numerical error anisotropy and weighted averaging of the mass acceleration term over the grid-points of the second-order FD stencil to reduce the overall numerical dispersion error. We present derivation of the schemes for 1D, 2D, and 3D cases and obtain their corresponding dispersion equations, then we find optimum weights by optimization of the time-space domain dispersion function and finally tabulate the optimized weights for each case. We analyze the numerical dispersion, stability and convergence rates of the proposed schemes and compare their numerical dispersion characteristics with the standard high-order ones. We also discuss efficient solution of the system of equations associated with the proposed implicit schemes using conjugate gradient method. The comparison of dispersion curves and the numerical solutions with the analytical and the pseudo-spectral solutions reveals that the proposed schemes have better performance than the standard spatial high-order schemes and remain stable for relatively large time-steps.


2013 ◽  
Vol 56 (6) ◽  
pp. 840-850 ◽  
Author(s):  
LIANG Wen-Quan ◽  
YANG Chang-Chun ◽  
WANG Yan-Fei ◽  
LIU Hong-Wei

2016 ◽  
Vol 26 (3/4) ◽  
pp. 698-721 ◽  
Author(s):  
J I Ramos

Purpose – The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions. Design/methodology/approach – Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained. Findings – It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation. Originality/value – This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. T57-T70 ◽  
Author(s):  
Yang Liu

Time-space domain finite-difference modeling has always had the problem of spatial and temporal dispersion. High-order finite-difference methods are commonly used to suppress spatial dispersion. Recently developed time-dispersion transforms can effectively eliminate temporal dispersion from seismograms produced by the conventional modeling of high-order spatial and second-order temporal finite differences. To improve the efficiency of the conventional modeling, I have developed optimal variable-length spatial finite differences to efficiently compute spatial derivatives involved in acoustic and elastic wave equations. First, considering that temporal dispersion can be removed, I prove that minimizing the relative error of the phase velocity can be approximately implemented by minimizing that of the spatial dispersion. Considering that the latter minimization depends on the wavelength that is dependent on the velocity, in this sense, this minimization is indirectly related to the velocity, and thus leads to variation of the spatial finite-difference operator with velocity for a heterogeneous model. Second, I use the Remez exchange algorithm to obtain finite-difference coefficients with the lowest spatial dispersion error over the largest possible wavenumber range. Then, dispersion analysis indicates the validity of the approximation and the algorithm. Finally, I use modeling examples to determine that the optimal variable-length spatial finite difference can greatly increase the modeling efficiency, compared to the conventional fixed-length one. Stability analysis and modeling experiments also indicate that the variable-length finite difference can adopt a larger time step to perform stable modeling than the fixed-length one for inhomogeneous models.


Sign in / Sign up

Export Citation Format

Share Document