Attaining regularization length insensitivity in phase-field models of ductile failure

2021 ◽  
Vol 384 ◽  
pp. 113936
Author(s):  
Brandon Talamini ◽  
Michael R. Tupek ◽  
Andrew J. Stershic ◽  
Tianchen Hu ◽  
James W. Foulk ◽  
...  
2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhan Chen

AbstractIn this work, the existence of a global minimizer for the previous Lagrangian formulation of nonpolar solvation model proposed in [1] has been proved. One of the proofs involves a construction of a phase field model that converges to the Lagrangian formulation. Moreover, an Eulerian formulation of nonpolar solvation model is proposed and implemented under a similar parameterization scheme to that in [1]. By doing so, the connection, similarity and difference between the Eulerian formulation and its Lagrangian counterpart can be analyzed. It turns out that both of them have a great potential in solvation prediction for nonpolar molecules, while their decompositions of attractive and repulsive parts are different. That indicates a distinction between phase field models of solvation and our Eulerian formulation.


Author(s):  
Markus Schmuck ◽  
Marc Pradas ◽  
Grigorios A. Pavliotis ◽  
Serafim Kalliadasis

We derive a new, effective macroscopic Cahn–Hilliard equation whose homogeneous free energy is represented by fourth-order polynomials, which form the frequently applied double-well potential. This upscaling is done for perforated/strongly heterogeneous domains. To the best knowledge of the authors, this seems to be the first attempt of upscaling the Cahn–Hilliard equation in such domains. The new homogenized equation should have a broad range of applicability owing to the well-known versatility of phase-field models. The additionally introduced feature of systematically and reliably accounting for confined geometries by homogenization allows for new modelling and numerical perspectives in both science and engineering. Our results are applied to wetting dynamics in porous media and to a single channel with strongly heterogeneous walls.


Sign in / Sign up

Export Citation Format

Share Document