Explicit control of 2D and 3D structural complexity by discrete variable topology optimization method

Author(s):  
Yuan Liang ◽  
XinYu Yan ◽  
GengDong Cheng
2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Jiantao Bai ◽  
Yanfang Zhao ◽  
Guangwei Meng ◽  
Wenjie Zuo

Abstract Topology optimization has been intensively studied and extensively applied in engineering design. However, the optimized results often take the form of a solid frame structure; hence, it is difficult to apply the topological results in the design of a thin-walled frame structure. Therefore, this paper proposes a novel bridging method to transform the topological results into a lightweight thin-walled frame structure while satisfying the stiffness and manufacturing requirements. First, the optimized topological results are obtained using the classical topology optimization method, which is smoothed to reduce structural complexity. Then, the initial thin-walled frame structure is created by referring to the smoothed topological results, in which the thin-walled cross section is designed according to the mechanical properties and manufacturing requirements. Furthermore, the size and shape of the thin-walled frame structure is optimized to minimize mass with the stiffness and manufacturing constraints. Finally, numerical examples demonstrate that the proposed method can reasonably design an optimized thin-walled frame structure from the topological results.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document