Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 Member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China

Author(s):  
Jinqi Qiao ◽  
Alireza Baniasad ◽  
Laura Zieger ◽  
Chen Zhang ◽  
Qun Luo ◽  
...  
2017 ◽  
Vol 5 (2) ◽  
pp. SF109-SF126 ◽  
Author(s):  
Yuxi Yu ◽  
Xiaorong Luo ◽  
Ming Cheng ◽  
Yuhong Lei ◽  
Xiangzeng Wang ◽  
...  

Shale oil and gas have been discovered in the lacustrine Zhangjiatan Shale in the southern Ordos Basin, China. To study the distribution of extractable organic matter (EOM) in the Zhangjiatan Shale ([Formula: see text] ranges from 1.25% to 1.28%), geochemical characterization of core samples of different lithologies, scanning electron microscope observations, low-pressure [Formula: see text] and [Formula: see text] adsorption, and helium pycnometry were conducted. The content and saturation of the EOM in the pores were quantitatively characterized. The results show that the distribution of the EOM in the shale interval is heterogeneous. In general, the shale layers have a higher EOM content and saturation than siltstone layers. The total organic content and the original storage capacity control the EOM content in the shale layers. For the siltstone layers, the EOM content is mainly determined by the original storage capacity. On average, 75% of the EOM occurs in the mesopores, followed by 14% in the macropores, and 11% in the micropores. The EOM saturation in the pores decreases with the increase in pore diameter. The distribution of EOM in the shale pores is closely related to the pore type. Micropores and mesopores developed in the kerogens and pyrobitumens and the clay-mineral pores coated with organic matter are most favorable for EOM retention and charging.


2019 ◽  
Vol 23 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Qingshao Liang ◽  
Jingchun Tian ◽  
Feng Wang ◽  
Xiang Zhang

Soft-sediment deformation (SSD) structures of the Upper Triassic Yanchang Formation are laterally widespread in the Ordos Basin. In the Huachi-Qingyang (H-Q) area of the Ordos Basin, the Chang6 oil member of the Upper Triassic Yanchang Formation is among the most significant Mesozoic oil-bearing strata. It is characterized by the development of reservoir sand bodies. During the depositional evolution of the Chang6 oil member, SSD structures induced by paleo-seismic events developed in the H-Q area in the middle of the basin. The SSD structures developed in the sand bodies of the Chang6 oil member are mainly ball-and-pillow structures, fold structures, sand dikes, irregular convolute stratifications and synsedimentary faults. The architecture of the sand bodies resulted from paleo-seismic events and gravity slumping and mainly include two types of structures: 1) SSD structures driven by paleo-seismic events with normal sedimentation (delta front sand body) (SN-SSD) and 2) SSD structures driven by paleo-seismic events with turbidites (formed by delta-front slumping and re-distribution due to seismic action) (ST-SSD). As a consequence, genetic models of the sand bodies formed by different sedimentation processes are established.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


Sign in / Sign up

Export Citation Format

Share Document