Single-well production history matching and geostatistical modeling as proxy to multi-well reservoir simulation for evaluating dynamic reservoir properties of coal seams

Author(s):  
C. Özgen Karacan
2021 ◽  
Author(s):  
Yifei Xu ◽  
Priyesh Srivastava ◽  
Xiao Ma ◽  
Karan Kaul ◽  
Hao Huang

Abstract In this paper, we introduce an efficient method to generate reservoir simulation grids and modify the fault juxtaposition on the generated grids. Both processes are based on a mapping method to displace vertices of a grid to desired locations without changing the grid topology. In the gridding process, a grid that can capture stratigraphical complexity is first generated in an unfaulted space. The vertices of the grid are then displaced back to the original faulted space to become a reservoir simulation grid. The resulting reversely mapped grid has a mapping structure that allows fast and easy fault juxtaposition modification. This feature avoids the process of updating the structural framework and regenerating the reservoir properties, which may be time-consuming. To facilitate juxtaposition updates within an assisted history matching workflow, several parameterized fault throw adjustment methods are introduced. Grid examples are given for reservoirs with Y-faults, overturned bed, and complex channel-lobe systems.


Author(s):  
Paulo Camargo Silva ◽  
Virgílio José Martins Ferreira Filho

In the recent literature of the production history matching the problem of non-uniqueness of reservoir simulation models has been considered a difficult problem. Complex workflows have been proposed to solve the problem. However, the reduction of uncertainty can only be done with the definition of Probability Density Functions that are highly costly. In this article we introduce a methodology to reduce uncertainty in the history matching using techniques of Monte Carlo performed on proxies as Reservoir Simulator. This methodology is able to compare different Probability Density Functions for different reservoir simulation models to define among the models which simulation model can provide more appropriate matching.


2007 ◽  
Vol 10 (03) ◽  
pp. 312-331 ◽  
Author(s):  
Christopher R. Clarkson ◽  
R. Marc Bustin ◽  
John P. Seidle

Summary Coalbed-methane (CBM) reservoirs commonly exhibit two-phase-flow (gas plus water) characteristics; however, commercial CBM production is possible from single-phase (gas) coal reservoirs, as demonstrated by the recent development of the Horseshoe Canyon coals of western Canada. Commercial single-phase CBM production also occurs in some areas of the low-productivity Fruitland Coal, south-southwest of the high-productivity Fruitland Coal Fairway in the San Juan basin, and in other CBM-producing basins of the continental United States. Production data of single-phase coal reservoirs may be analyzed with techniques commonly applied to conventional reservoirs. Complicating application, however, is the unique nature of CBM reservoirs; coal gas-storage and -transport mechanisms differ substantially from conventional reservoirs. Single-phase CBM reservoirs may also display complex reservoir behavior such as multilayer characteristics, dual-porosity effects, and permeability anisotropy. The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). CBM reservoirs have the potential for permeability anisotropy because of their naturally fractured nature, which may complicate PDA. To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios (>16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case. Introduction Commercial single-phase (gas) CBM production has been demonstrated recently in the Horseshoe Canyon coals of western Canada (Bastian et al. 2005) and previously in various basins in the US; there is currently a need for advanced PDA techniques to assist with evaluation of these reservoirs. Over the past several decades, significant advances have been made in PDA of conventional oil and gas reservoirs [select references include Fetkovich (1980), Fetkovich et al. (1987), Carter (1985), Fraim and Wattenbarger (1987), Blasingame et al. (1989, 1991), Palacio and Blasingame (1993), Fetkovich et al. (1996), Agarwal et al. (1999), and Mattar and Anderson (2003)]. These modern methods have greatly enhanced the engineers' ability to obtain quantitative information about reservoir properties and stimulation/damage from data that are gathered routinely during the producing life of a well, such as production data and, in some instances, flowing pressure information. The information that may be obtained from detailed PDA includes oil or gas in place (GIP), permeability-thickness product (kh), and skin (s), and this can be used to supplement information obtained from other sources such as PT analysis, material balance, and reservoir simulation.


Reservoir modelling and production forecasting can provide vital inputs to the efficient management of petroleum. Since the reservoirs are highly heterogeneous and nonlinear in nature, it is often difficult to obtain accurate estimates of the spatial distribution of reservoir properties representing the reservoir and corresponding production profiles. If an accurate model of a reservoir is built, it can lead to efficient management of the reservoir. This paper describes the mathematical modelling of oil reservoirs along with various optimization techniques applicable for history matching and production forecasting. Gradient based and non-gradient based optimization techniques viz. Simulated Annealing (SA), Scatter Search (SS), Neighborhood algorithm (NA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Ensemble Kalman Filters (EnKF) and Genetic Algorithm (GA) and their application to reservoir production history matching and performance are presented. The recent advancements and variants of these techniques applied for the purpose are also presented.


1994 ◽  
Vol 34 (1) ◽  
pp. 114
Author(s):  
M.D. Stevenson ◽  
W.V. Pinczewski ◽  
K. Meaney ◽  
L. Paterson

Numerical reservoir simulation in coal seams is different from conventional reservoir simulation because of the capacity for coal to adsorb large amounts of gas, including methane, carbon dioxide and nitrogen, and the need to model coal as a dual porosity system. These factors require specialised numerical simulators written to address these particular issues. This paper describes the development and applications of a reservoir simulator, SIMED II, to a number of applications in the coalbed methane context. SIMED II is an implicit finite-difference code developed to describe simultaneous gas and water flow in coal when there is more than one gas component present. Applications presented in this paper include (1) history matching and forecasting in vertical wells, (2) evaluation of dewatering during the cavity completion method of stimulating coal seams, (3) economic evaluation of nitrogen injection for enhanced coalbed methane recovery, and (4) application to the design and development of gassy coal mines involving gas drainage from horizontal wells. These applications have been directed at locations in the Sydney and Bowen basins in Australia, and the San Juan basin in the USA.


SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Yifei Xu ◽  
Priyesh Srivastava ◽  
Xiao Ma ◽  
Karan Kaul ◽  
Hao Huang

Summary In this paper, we introduce an efficient method to generate reservoir simulation grids and modify the fault juxtaposition on the generated grids. Both processes are based on a mapping method to displace vertices of a grid to desired locations without changing the grid topology. In the gridding process, a grid that can capture stratigraphical complexity is first generated in an unfaulted space. The vertices of the grid are then displaced back to the original faulted space to become a reservoir simulation grid. The resulting inversely mapped grid has a mapping structure that allows fast and easy fault juxtaposition modification. This feature avoids the process of updating the structural framework, which may be time-consuming. There is also no need to regenerate most of the reservoir properties in the new grid. To facilitate juxtaposition updates within an assisted history matching workflow, several parameterized fault throw adjustment methods are introduced. Grid examples are given for reservoirs with Y-faults, overturned beds, and complex channel-lobesystems.


Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 1) ◽  
Author(s):  
Yingfei Sui ◽  
Chuanzhi Cui ◽  
Zhen Wang ◽  
Yong Yang ◽  
Peifeng Jia

Abstract The interlayer interference is very serious in the process of water flooding development, especially when the reservoir adopts commingling production. The implementation of various interlayer interference mitigation measures requires that the production performance parameters and remaining oil distribution of each layer of the reservoir should be clearly defined, and the accurate production splitting of oil wells is the key. In this paper, the five-spot pattern is simplified to a single well production model of commingled production centered on oil well. The accurate production splitting results are obtained through automatic history matching of single well production performance. The comparison between the calculation results of this method and that of reservoir numerical simulation shows that the method is simple, accurate, and practical. In the field application, for the multilayer commingled production reservoir without accurate numerical simulation, this method can quickly and accurately realize the production splitting of the reservoir according to the development performance data.


Sign in / Sign up

Export Citation Format

Share Document