Interaction of microplastics and soil animals in agricultural ecosystems

Author(s):  
Yalin Zhang ◽  
Xiaoting Zhang ◽  
Xinyu Li ◽  
Defu He
2018 ◽  
Vol 69 (8) ◽  
pp. 2197-2208
Author(s):  
Carmen Otilia Rusanescu ◽  
Erol Murad ◽  
Cosmin Jinescu ◽  
Marin Rusanescu

In the present paper are presented the experimental results of biomass gasification, the biochair was produced from vineyards by controlled pyrolysis at 750 �C, in order to increase the fertility of soils, it was found the increase of the fertility produced by the development of the vegetables in the soil to which was added biochar. Soil was added to soil 4 g/dm3 biochar, 8 g/dm3 biochar, the soil had no high humidity, was taken at a time when it had not rained for at least one week, the soil pH was 8, in the soil with 8 g/dm3 biochar the plants increased compared to the soil with 4 g/dm3 and the soil without biochar. The biochar resulting from pyrolysis and gasification processes is a valuable amendment to agricultural soils and an efficient and economical way to seize carbon. Using biochar it is possible to increase the diversity of agricultural land in an environmentally sound way in areas with depleted soils, limited organic resources and insufficient water for development. Helps to soil carbon sequestration with negative CO2 balance, increases the productive potential of agricultural ecosystems.


2012 ◽  
Vol 11 (11) ◽  
pp. 1156-1166 ◽  
Author(s):  
Ping Lan ◽  
Wenfeng Li ◽  
Wolfgang Schmidt

Phosphate (Pi) deficiency impairs plant growth and productivity in many agricultural ecosystems, causing severe reductions in crop yield. To uncover novel aspects in acclimation to Pi starvation, we investigated the correlation between Pi deficiency-induced changes in transcriptome and proteome profiles in Arabidopsis roots. Using exhaustive tandem mass spectrometry-based shotgun proteomics and whole-genome RNA sequencing to generate a nearly complete catalog of expressed mRNAs and proteins, we reliably identified 13,298 proteins and 24,591 transcripts, subsets of 356 proteins and 3106 mRNAs were differentially expressed during Pi deficiency. Most dramatic changes were noticed for genes involved in Pi acquisition and in processes that either liberate Pi or bypass Pi/ATP-consuming metabolic steps, for example during membrane lipid remodeling and glycolytic carbon flux. The concordance between the abundance of mRNA and its encoded protein was generally high for highly up-regulated genes, but the analysis also revealed numerous discordant changes in mRNA/protein pairs, indicative of divergent regulation of transcription and post-transcriptional processes. In particular, a decreased abundance of proteins upon Pi deficiency was not closely correlated with changes in the corresponding mRNAs. In several cases, up-regulation of gene activity was observed solely at the protein level, adding novel aspects to key processes in the adaptation to Pi deficiency. We conclude that integrated measurement and interpretation of changes in protein and transcript abundance are mandatory for generating a complete inventory of the components that are critical in the response to environmental stimuli.


1992 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Yao Deliang ◽  
Shen Weiming ◽  
Li Jiachun

Sign in / Sign up

Export Citation Format

Share Document