Self-assembly in saponin / surfactant mixtures: escin and sodium dodecylsulfate

Author(s):  
I M Tucker ◽  
A Burley ◽  
R E Petkova ◽  
S L Hosking ◽  
J R P Webster ◽  
...  
Langmuir ◽  
2014 ◽  
Vol 30 (32) ◽  
pp. 9741-9751 ◽  
Author(s):  
Jeffrey Penfold ◽  
Robert K. Thomas ◽  
Peixun Li ◽  
Jordan T. Petkov ◽  
Ian Tucker ◽  
...  

2019 ◽  
Vol 6 (3) ◽  
pp. 181979 ◽  
Author(s):  
K. M. Sachin ◽  
Sameer A. Karpe ◽  
Man Singh ◽  
Ajaya Bhattarai

The micellar property of mixed surfactant systems, cationic (dodecyltrimethylammonium bromide, DTAB) and anionic (sodium dodecylsulfate, SDS) surfactants with variable molar ratios in aqueous system has been reported by using surface tension and conductivity measurements at T = 293.15, 298.15 and 303.15 K. DTAB concentrations are varied from 1.0 × 10 −4 to 3 × 10 −4 mol l −1 in 1.0 × 10 −2 mol l −1 SDS solution while the SDS concentration is varied from 1.0 × 10 −3 to 1.5 × 10 −2 mol l −1 in approximately 5.0 × 10 −3 mol l −1 DTAB, so that such concentrations of DTAB-SDS (DTAB-rich) and SDS-DTAB (SDS-rich) solutions were chosen 3 : 1 ratio. The critical micellar concentration, as well as surface and thermodynamic properties for DTAB-rich and SDS-rich solutions, were evaluated by the surface tension ( γ ) and conductivity ( κ ) methods. The pseudo phase separation model was coupled with the dissociated Margules model for synergism. The Krafft temperature behaviour and optical analysis of mixed surfactants are studied using conductivity and UV–Vis spectroscopy, respectively. The dispersibility and stability of DTAB-rich and SDS-rich solutions with and without dyes (2.5 × 10 −5 mol l −1 of methyl orange and methylene blue) are carried out by using UV–Vis spectroscopy and dynamic light scattering.


2017 ◽  
Vol 114 (18) ◽  
pp. E3592-E3601 ◽  
Author(s):  
Jenny Marie Andersson ◽  
Carl Grey ◽  
Marcus Larsson ◽  
Tiago Mendes Ferreira ◽  
Emma Sparr

The lipid–protein film covering the interface of the lung alveolar in mammals is vital for proper lung function and its deficiency is related to a range of diseases. Here we present a molecular-level characterization of a clinical-grade porcine lung surfactant extract using a multitechnique approach consisting ofH1–C13solid-state nuclear magnetic spectroscopy, small- and wide-angle X-ray scattering, and mass spectrometry. The detailed characterization presented for reconstituted membranes of a lung extract demonstrates that the molecular structure of lung surfactant strongly depends on the concentration of cholesterol. If cholesterol makes up about 11% of the total dry weight of lung surfactant, the surfactant extract adopts a single liquid-ordered lamellar phase,Lα(o), at physiological temperatures. ThisLα(o)phase gradually changes into a liquid-disordered lamellar phase,Lα(d), when the temperature is increased by a few degrees. In the absence of cholesterol the system segregates into one lamellar gel phase and oneLα(d)phase. Remarkably, it was possible to measure a large set of order parameter magnitudes|SCH|from the liquid-disordered and -ordered lamellar phases and assign them to specific C–H bonds of the phospholipids in the biological extract with no use of isotopic labeling. These findings with molecular details on lung surfactant mixtures together with the presented NMR methodology may guide further development of pulmonary surfactant pharmaceuticals that better mimic the physiological self-assembly compositions for treatment of pathological states such as respiratory distress syndrome.


Sign in / Sign up

Export Citation Format

Share Document