Adsorption mechanism of 3-mercaptopropionic acid as a chalcopyrite depressant in chalcopyrite and galena separation flotation

Author(s):  
Weixin Huang ◽  
Ruohua Liu ◽  
Feng Jiang ◽  
Honghu Tang ◽  
Li Wang ◽  
...  
Molekul ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. 98
Author(s):  
Yayan Sunarya

In this research, 3-Mercaptopropionic acid (MPA) as corrosion inhibitor of carbon steel in CO2 aerated 1% NaCl solution with buffer pH adjustment has been studied by means of electrochemical impedance (EIS) and polarization (Tafel plot). MPA was found to be an effective carbon steel inhibitor. Percentage inhibition efficiency (IE %) calculated by both Tafel plot and EIS, ranged from 85% to 90%. MPA was found to affect the cathodic processes and act as cathodic-type inhibitors. Mechanism of inhibit corrosion by adsorption mechanism leads to the formation of a protective chemisorbed film on the metal surface film which suppresses the dissolution reaction and the hydrogen evolution reaction is activation controlled.


1979 ◽  
Vol 44 (4) ◽  
pp. 1179-1186 ◽  
Author(s):  
Milan Zaoral ◽  
František Brtník ◽  
Martin Flegel ◽  
Tomislav Barth ◽  
Alena Machová

[1-β-Mercaptopropionic acid, 8-norarginine]vasopressin (L8, D8; I, II) was prepared by condensation of β-benzylthiopropionyl-tyrosyl-phenylalanyl-glutaminyl-asparaginyl-S-benzylcysteine with Nγ-benzyloxycarbonyl-α,γ-diaminobutyryl-glycine amide (L2, D2) by the azide or carbodiimide method, respectively, removal of the benzyloxycarbonyl residue, guanidination of γ-amino groups, removal of protecting groups, closing of the disulfide bridge, and electrophoretic purification. I has an almost 2 times higher antidiuretic effect than DDAVP and a 3 times higher pressor effect than AVP. II has 20-25% of the antidiuretic effect of DDAVP and 16 IU/mg of the pressor effect.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 434
Author(s):  
Pascaline Bahati ◽  
Xuejun Zeng ◽  
Ferdinand Uzizerimana ◽  
Ariunsaikhan Tsoggerel ◽  
Muhammad Awais ◽  
...  

In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.


Sign in / Sign up

Export Citation Format

Share Document