Effect of prompt dissociation of formyl radical on 1,3,5-trioxane and CH2O laminar flame speeds with CO2 dilution at elevated pressure

2017 ◽  
Vol 183 ◽  
pp. 253-260 ◽  
Author(s):  
Hao Zhao ◽  
Jiapeng Fu ◽  
Francis M. Haas ◽  
Yiguang Ju
2022 ◽  
Vol 238 ◽  
pp. 111915
Author(s):  
Geyuan Yin ◽  
Jinglun Li ◽  
Meng Zhou ◽  
Jiaxing Li ◽  
Chaojun Wang ◽  
...  

2021 ◽  
Author(s):  
Mingshan Sun ◽  
Zhiwen Gan

Abstract The hydrogen addition is a potential way to reduce the soot emission of aviation kerosene. The current study analyzed the effect of hydrogen addition on aviation kerosene (Jet A1) soot formation in a laminar flame at elevated pressure to obtain a fundamental understanding of the reduced soot formation by hydrogen addition. The soot formation of flame was simulated by CoFlame code. The soot formation of kerosene-nitrogen-air, (kerosene + replaced hydrogen addition)-nitrogen-air, (kerosene + direct hydrogen addition)-nitrogen-air and (kerosene + direct nitrogen addition)-nitrogen-air laminar flames were simulated. The calculated pressure includes 1, 2 and 5 atm. The hydrogen addition increases the peak temperature of Jet A1 flame and extends the height of flame. The hydrogen addition suppresses the soot precursor formation of Jet A1 by physical dilution effect and chemical inhibition effect, which weaken the poly-aromatic hydrocarbon (PAH) condensation process and reduce the soot formation. The elevated pressure significantly accelerates the soot precursor formation and increases the soot formation in flame. Meanwhile, the ratio of reduced soot volume fraction to base soot volume fraction by hydrogen addition decreases with the increase of pressure, indicating that the elevated pressure weakens the suppression effect of hydrogen addition on soot formation in Jet A1 flame.


2020 ◽  
Vol 45 (56) ◽  
pp. 32508-32520
Author(s):  
Xin Lu ◽  
Erjiang Hu ◽  
Sage Kokjohn ◽  
Qunfei Gao ◽  
Geyuan Yin ◽  
...  

2012 ◽  
Vol 148 (1) ◽  
pp. 40-47
Author(s):  
Stanisław SZWAJA ◽  
Wojciech TUTAK ◽  
Karol GRAB-ROGALIŃSKI ◽  
Arkadiusz JAMROZIK ◽  
Arkadiusz KOCISZEWSKI

Results from tests conducted in several RTD centers lead to conclusion that biogas as a potential fuel for the internal combustion (IC) spark ignited (SI) engine features with its satisfactory combustion predisposition causing smooth engine run without accidental misfiring or knock events. This good predisposition is obtained due to carbon dioxide (CO2) content in the biogas. On the other hand, carbon dioxide as incombustible gas contribute to decrease in the brake power of the biogas fueled engine. To analyze mutual CO2 and CH4 content on biogas burning the combustion parameters as follows: adiabatic combustion temperature, laminar flame speed and ignition delay of biogas with various methane content were determined and presented in the paper. Additionally, these parameters for pure methane were also included in order to make comparison between each other. As computed, ignition delay, which has is strongly correlated with knock resistance, can change several times with temperature increase, but does not change remarkably with increase in methane content. Adiabatic combustion temperature does not also ought to influence on engine performance or increase in engine cooling and exhaust losses due to its insignificant changes. The largest change was observed in laminar flame speed, that can influence on development of the first premixed combustion phase.


Author(s):  
Yash Kochar ◽  
Jerry Seitzman ◽  
Timothy Lieuwen ◽  
Wayne Metcalfe ◽  
Sine´ad Burke ◽  
...  

Laminar flame speeds at elevated pressure for methane-based fuel blends are important for refining the chemical kinetics that are relevant at engine conditions. The present paper builds on earlier measurements and modeling by the authors by extending the validity of a chemical kinetics mechanism to laminar flame speed measurements obtained in mixtures containing significant levels of helium. Such mixtures increase the stability of the experimental flames at elevated pressures and extend the range of laminar flame speeds. Two experimental techniques were utilized, namely a Bunsen burner method and an expanding spherical flame method. Pressures up to 10 atm were studied, and the mixtures ranged from pure methane to binary blends of CH4/C2H6 and CH4/C3H8. In the Bunsen flames, the data include elevated initial temperatures up to 650 K. There is generally good agreement between model and experiment, although some discrepancies still exist with respect to equivalence ratio for certain cases. A significant result of the present study is that the effect of mixture composition on flame speed is well captured by the mechanism over the extreme ranges of initial pressure and temperature covered herein. Similarly, the mechanism does an excellent job at modeling the effect of initial temperature for methane-based mixtures up to at least 650 K.


Sign in / Sign up

Export Citation Format

Share Document