A fast reconstruction of the parity-check matrices of LDPC codes in a noisy environment

Author(s):  
Qian Liu ◽  
Hao Zhang ◽  
Gaofeng Shen ◽  
Fengtong Mei
Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1106
Author(s):  
Vladimir L. Petrović ◽  
Dragomir M. El Mezeni ◽  
Andreja Radošević

Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently encoded using forward substitution and without computationally intensive multiplications with dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be inefficient since many hardware processing units stay idle during the encoding process. This paper proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE) while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture includes a flexible circular shifting network, which is capable of shifting a single large bit vector or multiple smaller bit vectors depending on the code. The encoder architecture was built around the shifter in a way that multiple parity check matrix elements can be processed in parallel for short codes, thus providing almost the same level of parallelism as for long codes. The processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimized encoder provided high throughputs, low latency, and up-to-date the best HUE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chakir Aqil ◽  
Ismail Akharraz ◽  
Abdelaziz Ahaitouf

In this study, we propose a “New Reliability Ratio Weighted Bit Flipping” (NRRWBF) algorithm for Low-Density Parity-Check (LDPC) codes. This algorithm improves the “Reliability Ratio Weighted Bit Flipping” (RRWBF) algorithm by modifying the reliability ratio. It surpasses the RRWBF in performance, reaching a 0.6 dB coding gain at a Binary Error Rate (BER) of 10−4 over the Additive White Gaussian Noise (AWGN) channel, and presents a significant reduction in the decoding complexity. Furthermore, we improved NRRWBF using the sum of the syndromes as a criterion to avoid the infinite loop. This will enable the decoder to attain a more efficient and effective decoding performance.


2007 ◽  
Vol 17 (01) ◽  
pp. 103-123 ◽  
Author(s):  
JAMES S. PLANK ◽  
MICHAEL G. THOMASON

As peer-to-peer and widely distributed storage systems proliferate, the need to perform efficient erasure coding, instead of replication, is crucial to performance and efficiency. Low-Density Parity-Check (LDPC) codes have arisen as alternatives to standard erasure codes, such as Reed-Solomon codes, trading off vastly improved decoding performance for inefficiencies in the amount of data that must be acquired to perform decoding. The scores of papers written on LDPC codes typically analyze their collective and asymptotic behavior. Unfortunately, their practical application requires the generation and analysis of individual codes for finite systems. This paper attempts to illuminate the practical considerations of LDPC codes for peer-to-peer and distributed storage systems. The three main types of LDPC codes are detailed, and a huge variety of codes are generated, then analyzed using simulation. This analysis focuses on the performance of individual codes for finite systems, and addresses several important heretofore unanswered questions about employing LDPC codes in real-world systems.


Sign in / Sign up

Export Citation Format

Share Document