Numerical simulation for microstructure evolution in AM50 Mg alloy during hot rolling

2010 ◽  
Vol 47 (4) ◽  
pp. 919-925 ◽  
Author(s):  
Hanlin Ding ◽  
Kazuki Hirai ◽  
Tomoyuki Homma ◽  
Shigeharu Kamado
2011 ◽  
Vol 291-294 ◽  
pp. 449-454 ◽  
Author(s):  
Fuan Hua ◽  
Chao Yi Zhang ◽  
Qiang Li ◽  
Bao Yi Yu ◽  
Wei Hua Liu ◽  
...  

In order to optimize rolling process of AM50 Mg alloy, numerical simulation method is adopted to find reasonable process parameters. And then, the metallograph was viewed to find the microstructure evolution during hot rolling process. Through numerical simulation it is found that while the heating temperature is 420 and the train less than 0.33 each time. Through 10 times rolling, a 10mm thickness plate was rolled to 0.5mm, and its grain size also decreases to 10μm, which indicates that AM50 Mg alloy can be formed by hot rolling method.


2011 ◽  
Vol 50 (7) ◽  
pp. 1951-1957 ◽  
Author(s):  
Sen-dong Gu ◽  
Li-wen Zhang ◽  
Chong-xiang Yue ◽  
Jin-hua Ruan ◽  
Jian-lin Zhang ◽  
...  

2013 ◽  
Vol 762 ◽  
pp. 22-30 ◽  
Author(s):  
Rudolf Kawalla ◽  
Matthias Schmidtchen

In the present paper actual demands for modern simulation strategies for hot rolling are discussed. The main focus of the discussion is on material flow simulation for hot rolling and the computation of material inhomogeneities. An overview on simulation techniques for material flow and microstructure evolution is given. Approaches for new simulation strategies which give fast results with a high modeling depth are discussed. As a result of actual investigations a fast model for material flow is presented.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Krzysztof Muszka ◽  
Mateusz Sitko ◽  
Paulina Lisiecka-Graca ◽  
Thomas Simm ◽  
Eric Palmiere ◽  
...  

The experimental and numerical study of the effects of the recrystallization behavior of austenite model alloys during hot plate rolling on reverse rolling is the main goal of the paper. The computer models that are currently applied for simulation of reverse rolling are not strain-path-sensitive, thus leading to overestimation of the processing parameters outside the accepted process window (e.g., deformation in the partial austenite recrystallization region). Therefore, in this work, a particular focus is put on the investigation of strain path effects that occur during hot rolling and their influence on the microstructure evolution and mechanical properties of microalloyed austenite. Both experimental and numerical techniques are employed in this study, taking advantage of the integrated computational material engineering concept. The combined isotropic–kinematic hardening model is used for the macroscale predictions to take into account softening effects due to strain reversal. The macroscale model is additionally enriched with the full-field microstructure evolution model within the cellular automata framework. Examples of obtained results, highlighting the role of the strain reversal on the microstructural response, are presented within the paper. The combination of the physical simulation of austenitic model alloys and computer modeling provided new insights into optimization of the processing routes of advanced high-strength steels (AHSS).


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2018 ◽  
Vol 98 (10) ◽  
pp. 456-463
Author(s):  
Chunxia Wang ◽  
Fuxiao Yu ◽  
Dazhi Zhao ◽  
Xiang Zhao ◽  
Liang Zuo

Sign in / Sign up

Export Citation Format

Share Document