Surface strain and co-doping effect on Sm and Y co-doped BaCeO3 in proton conducting solid oxide fuel cells

2022 ◽  
Vol 202 ◽  
pp. 111007
Author(s):  
Lei He ◽  
Huiying Gao ◽  
Yan Xuan ◽  
Feng Zhang ◽  
Junfeng Ren ◽  
...  
Author(s):  
Yanru Yin ◽  
shoufu yu ◽  
Hailu Dai ◽  
Lei Bi

Doping La0.5Sr0.5MnO3-δ (LSM) cathode with the Co element allows the new material La0.5Sr0.5Mn0.9Co0.1O3-δ (LSMCo) to show improved performance compared with the Co-free LSM for proton-conducting solid oxide fuel cells (H-SOFCs),...


2019 ◽  
Vol 7 (27) ◽  
pp. 16136-16148 ◽  
Author(s):  
Yunpeng Xia ◽  
Zongzi Jin ◽  
Huiqiang Wang ◽  
Zheng Gong ◽  
Huanlin Lv ◽  
...  

Bi and Sn co-doped perovskite BaFe0.8−XSn0.2BiXO3−δ materials have been designed and characterized as a series of new cathodes for proton-conducting solid oxide fuel cells (SOFCs), providing a new life for the traditional BaFeO3-based cathodes.


Author(s):  
Masashi Mori ◽  
Zhenwei Wang ◽  
Takanori Itoh

Ce 0.9 Gd 0.1 O 1.95 (CGO) and (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) have been proposed as possible alternative electrolytes in intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the mechanisms of densely sintering Co-doped CGO and ScSZ electrolytes during the SOFC fabrication process were investigated using synchrotron X-ray diffraction (SR-XRD) analysis. The addition of CoO enhanced the sintering characteristics of both CGO and ScSZ. Based on the results of the SR-XRD analysis, it was found that CGO and CoO did not form a solid solution after heat treatment at 1200°C for 10 h. On the other hand, the solubility limit of Co in ScSZ was estimated to be ≤3 mol % after firing at 1400°C, and Co doping accelerated the conversion of the two phases of the fluorite structures with cubic and rhombohedral phases into a single cubic phase. Because no significant densification of the Co-doped ScSZ samples was observed before and after the phase change and Co diffusion, it suggests that these reaction sintering processes should not be strongly related to densification. From the results of scanning electron microscopy, Co doping suggests to assist the densification of the ScSZ samples through liquid phase sintering, similar to Co-doped CGO.


2021 ◽  
Vol 13 (9) ◽  
pp. 4736
Author(s):  
Fan Liu ◽  
Chuancheng Duan

Solid oxide fuel cells (SOFCs) are promising and rugged solid-state power sources that can directly and electrochemically convert the chemical energy into electric power. Direct-hydrocarbon SOFCs eliminate the external reformers; thus, the system is significantly simplified and the capital cost is reduced. SOFCs comprise the cathode, electrolyte, and anode, of which the anode is of paramount importance as its catalytic activity and chemical stability are key to direct-hydrocarbon SOFCs. The conventional SOFC anode is composed of a Ni-based metallic phase that conducts electrons, and an oxygen-ion conducting oxide, such as yttria-stabilized zirconia (YSZ), which exhibits an ionic conductivity of 10−3–10−2 S cm−1 at 700 °C. Although YSZ-based SOFCs are being commercialized, YSZ-Ni anodes are still suffering from carbon deposition (coking) and sulfur poisoning, ensuing performance degradation. Furthermore, the high operating temperatures (>700 °C) also pose challenges to the system compatibility, leading to poor long-term durability. To reduce operating temperatures of SOFCs, intermediate-temperature proton-conducting SOFCs (P-SOFCs) are being developed as alternatives, which give rise to superior power densities, coking and sulfur tolerance, and durability. Due to these advances, there are growing efforts to implement proton-conducting oxides to improve durability of direct-hydrocarbon SOFCs. However, so far, there is no review article that focuses on direct-hydrocarbon P-SOFCs. This concise review aims to first introduce the fundamentals of direct-hydrocarbon P-SOFCs and unique surface properties of proton-conducting oxides, then summarize the most up-to-date achievements as well as current challenges of P-SOFCs. Finally, strategies to overcome those challenges are suggested to advance the development of direct-hydrocarbon SOFCs.


Sign in / Sign up

Export Citation Format

Share Document