scholarly journals Structure and lattice thermal conductivity of grain boundaries in silicon by using machine learning potential and molecular dynamics

2022 ◽  
Vol 204 ◽  
pp. 111137
Author(s):  
Susumu Fujii ◽  
Atsuto Seko
Author(s):  
Ishraq Shabib ◽  
Mohammad Abu-Shams ◽  
Mujibur R. Khan

The objective of this study is to examine lattice thermal conductivity (κ) of Fe-Cr alloys containing different 〈001〉 tilt grain boundaries (GBs). The effects of Cr concentration (2 and 10%) and three different 〈001〉 tilt boundaries (Σ5{310}, Σ13{510}, and Σ17{530}) have been examined at 70K using the reverse non-equilibrium molecular dynamics (rNEMD) simulation technique. The results exhibit higher κ for Fe or Fe-Cr models with Σ5[310] GB. The values are 2–4% and 12–16% more than those of models with Σ13[510] and Σ17[530] GBs, respectively. Pure Fe single crystal models exhibit higher conductivities than Fe/Fe-Cr models with various Σ tilt boundaries. κ decreases 7–9% as GBs are introduced into the pure Fe single crystal models. On the other hand, the conductivities of Fe-Cr models are affected more by the Cr concentration than the presence of a particular GB. As 10% Cr is added into the system the conductivity decreases by 7.6–9.4% compared to the pure Fe models.


2020 ◽  
Vol 161 ◽  
pp. 112004
Author(s):  
Hongyu Zhang ◽  
Jizhong Sun ◽  
Yingmin Wang ◽  
Thomas Stirner ◽  
Ali Y. Hamid ◽  
...  

2021 ◽  
Vol 318 ◽  
pp. 39-47
Author(s):  
Ahli K.D. Willie ◽  
Hong Tao Zhao ◽  
M. Annor-Nyarko

In this work, molecular dynamics (MD) simulation was utilized in relation to access the thermal conductivity of UO2, PuO2 and (U, Pu)O2 in temperature range of 500–3000 K. Diffusion study on mixed oxide (MOX) was also performed to assess the effect of radiation damage by heavy ions at burnup temperatures. Analysis of the lattice thermal conductivity of irradiated MOX to its microstructure was carried out to enhance the irradiation defects with how high burnup hinders fuel properties and its pellet-cladding interaction. Fission gas diffusion as determined was mainly modelled by main diffusion coefficient. Degradation of diffusivity is predicted in MOX as composition deviate from the pure end members. The concentration of residual anion defects is considerably higher than that of cations in all oxides. Depending on the diffusion behavior of the fuel lattice, there was decrease in the ratio of anion to cation defects with increasing temperature. Besides, the modern mixed oxide fuel releases fission gas compared to that of UO2 fuel at moderate burnups.


Sign in / Sign up

Export Citation Format

Share Document