scholarly journals Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts

2015 ◽  
Vol 62 ◽  
pp. 254-263 ◽  
Author(s):  
Edward J. Ciaccio ◽  
James Coromilas ◽  
Hiroshi Ashikaga ◽  
Daniel O. Cervantes ◽  
Andrew L. Wit ◽  
...  
Heart Rhythm ◽  
2007 ◽  
Vol 4 (8) ◽  
pp. 1034-1045 ◽  
Author(s):  
Edward J. Ciaccio ◽  
Hiroshi Ashikaga ◽  
Riyaz A. Kaba ◽  
Daniel Cervantes ◽  
Bruce Hopenfeld ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Eric Sung ◽  
Adityo Prakosa ◽  
Natalia A. Trayanova

Aims: Disease-induced repolarization heterogeneity in infarcted myocardium contributes to VT arrhythmogenesis but how apicobasal and transmural (AB-TM) repolarization gradients additionally affect post-infarct VT dynamics is unknown. The goal of this study is to assess how AB-TM repolarization gradients impact post-infarct VT dynamics using patient-specific heart models.Method: 3D late gadolinium-enhanced cardiac magnetic resonance images were acquired from seven post-infarct patients. Models representing the patient-specific scar and infarct border zone distributions were reconstructed without (baseline) and with repolarization gradients along both the AB-TM axes. AB only and TM only models were created to assess the effects of each ventricular gradient on VT dynamics. VTs were induced in all models via rapid pacing.Results: Ten baseline VTs were induced. VT inducibility in AB-TM models was not significantly different from baseline (p>0.05). Reentry pathways in AB-TM models were different than baseline pathways due to alterations in the location of conduction block (p<0.05). VT exit sites in AB-TM models were different than baseline VT exit sites (p<0.05). VT inducibility of AB only and TM only models were not significantly different than that of baseline (p>0.05) or AB-TM models (p>0.05). Reentry pathways and VT exit sites in AB only and TM only models were different than in baseline (p<0.05). Lastly, repolarization gradients uncovered multiple VT morphologies with different reentrant pathways and exit sites within the same structural, conducting channels.Conclusion: VT inducibility was not impacted by the addition of AB-TM repolarization gradients, but the VT reentrant pathway and exit sites were greatly affected due to modulation of conduction block. Thus, during ablation procedures, physiological and pharmacological factors that impact the ventricular repolarization gradient might need to be considered when targeting the VTs.


2006 ◽  
Vol 39 (4) ◽  
pp. S82
Author(s):  
E.J. Ciaccio ◽  
H. Ashikaga ◽  
R.A. Kaba ◽  
D. Cervantes ◽  
B. Hopenfeld ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 153a
Author(s):  
Rafael Shimkunas ◽  
Om Makwana ◽  
Mona Bazagan ◽  
Paul C. Simpson ◽  
Mark B. Ratcliffe ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jing Yang ◽  
Geoffrey W CHO ◽  
Lihao He ◽  
Yuxin Chu ◽  
Jin He ◽  
...  

Background and Hypothesis: Reperfusion injury accounts for ~50% of myocardial infarct size, and clinically efficacious therapies are lacking. Histone deacetylase (HDAC) inhibition enhances cardiomyocyte autophagic activity, mitochondria biogenesis, and blunts ischemia/reperfusion (I/R) injury when given at the time of reperfusion. However, as HDAC inhibition has pleiotropic effects, we will test whether augmentation of autophagic flux using a specific autophagy-inducing peptide, Tat-Beclin (TB), is cardioprotective. Methods: 8-12-week-old, wild-type, C57BL6 mice were randomized into three groups: vehicle control, Tat-Scrambled (TS) peptide, or Tat-Beclin (TB) peptide. Each group was subjected to I/R surgery (45min ischemia, 24h reperfusion). Infarct size, systolic function, and mitochondrial dynamics were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were used to test for cardiomyocyte specificity. Conditional cardiomyocyte ATG7 knockout (ATG7 KO) mice and ATG7 knockdown by siRNA in NRVMs were used to evaluate the role of autophagy. Results: TB treatment at reperfusion reduced infarct size by 20.1±6.3% (n=23, p<0.02) and improved systolic function. Increased autophagic flux and reduced reactive oxygen species (ROS) were observed in the infarct border zone. The cardioprotective effects of TB were abolished in ATG7 KO mice. TB increased mtDNA content in the border zone significantly. In NRVMs subjected to I/R, TB reduced cell death by 41±6% (n=12, p<0.001), decreased ROS, and increased mtDNA content significantly by ~50%. Moreover, TB promoted expression of PGC1α (a major driver of mitochondrial biogenesis) both in the infarct border zone and NRVMs subjected to I/R by ~40%, and increased levels of mitochondrial dynamics gene transcripts Drp1, Fis1, and MFN1 / 2. Conversely, ATG7 knockdown in NRVMs and cardiac ATG7 KO abolished the beneficial effects of TB on mitochondria DNA content. Conclusions: Autophagic flux is an essential process to mitigate myocardial reperfusion injury acting, at least in part, by inducing PGC1α-mediated mitochondrial biogenesis. Augmentation of autophagic flux may emerge as a viable clinical therapy to reduce reperfusion injury in myocardial infarction.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Eric Sung ◽  
Adityo Prakosa ◽  
Natalia Trayanova

Introduction: Post-infarct ventricular tachycardias (VT) arise due to structural remodeling (scarring). Physiological repolarization gradients (apicobasal and transmural) exist in the human heart, but the effects on post-infarct VT dynamics are unknown. Hypothesis: We hypothesized that incorporation of repolarization gradients in personalized digital hearts of post-infarct patients impacts VT exit sites without altering the location of the VTs. Methods: 3D late-gadolinium enhanced CMR images were acquired from 7 post-infarct patients. Personalized image-based computational heart models (digital hearts) representing scar and infarct border zone distributions were constructed. Apicobasal (AB) and transmural (TM) repolarization gradients were incorporated using a validated method (Fig A). VTs were induced at baseline (no repolarization gradient) via rapid pacing in the right ventricular apex, using two pacing cycle lengths, mimicking non-invasive programmed stimulation. Pacing protocols that induced baseline VTs were repeated under AB and TM conditions. Results: Ten VTs were induced in baseline digital hearts. 8 AB VTs and 8 TM VTs were induced; the remaining 2 VTs for both AB and TM digital hearts could not be induced. 5/8 induced AB VTs had VT exit sites matching baseline VT exit sites; the remaining 3/8 AB VTs had reversed VT exit and entrance sites from the corresponding baseline VTs (Fig B, VT 1 & 2). 4/8 induced TM VTs had exit sites that matched those at baseline; the remaining TM VTs had exit and entrance sites reversed from those of baseline VTs (Fig B, VT 1, 2 & 3). All 8 AB VTs and 8 TM VTs had the same location as corresponding baseline VTs. Conclusion: AB and TM repolarization gradients can act to reverse VT entrance and exit sites without changing VT location. Thus, incorporation of physiological repolarization gradients into personalized digital hearts may not impact VT ablation targeting but may affect accurate prediction of VT exit or entrance sites.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Alexander R Hoachlandr-Hobby ◽  
Remus M Berretta ◽  
Yijun Yang ◽  
Eric Feldsott ◽  
Hajime Kubo ◽  
...  

Acute injuries to the heart, like myocardial infarction (MI), contribute to the development and pathology of heart failure (HF). Reperfusion of the ischemic heart greatly increases survival but results in reperfusion injury that can account for up to 50% of the final infarct size. The inflammatory response to MI-induced myocardial injury is thought to be responsible for the propagation of reperfusion injury into the infarct border zone, expanding myocardial damage. We have previously shown in a swine model of MI that intramyocardial injections of cortical bone-derived stem cells (CBSCs) into the infarct border zone has no acute cardioprotective effect but reduces scar size by half and prevents the decline of ejection fraction and LV dilation 3 months after MI. Our new preliminary data show that CBSCs have potent immunoregulatory capabilities. Therefore, we hypothesize that CBSC treatment has an effect on the immune response to MI that improves the wound healing response to myocardial injury and mitigates LV remodeling and infarct size 3 months later. To test this hypothesis, we characterized the effects of CBSC paracrine factors on macrophages in vitro and found that CBSC-treated macrophages express higher levels of CD206, produce more IL-1RA and IL-10, and phagocytose apoptotic myocytes more efficiently. In addition, macrophages were increased in CBSC-treated swine hearts 7 days after MI compared to controls with a corresponding increase in IL-1RA and TIMP-2. Apoptosis was decreased overall and in macrophages specifically in CBSC-treated animals. From these data we conclude CBSCs may exert an acute pro-reparative effect on the immune response after MI, reducing reperfusion injury and adverse remodeling resulting in improved functional outcomes at later time points.


Sign in / Sign up

Export Citation Format

Share Document