infarct border
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Shervin Banitalebi ◽  
Nadia Skauli ◽  
Samuel Geiseler ◽  
Ole Petter Ottersen ◽  
Mahmood Amiry-Moghaddam

There is an urgent need to better understand the mechanisms involved in scar formation in brain. It is well known that astrocytes are critically engaged in this process. Here we analyze in-cipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mo-bility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation.


2021 ◽  
Author(s):  
Brett Baggett ◽  
Kevin Murphy ◽  
Elif Sengun ◽  
Eric Mi ◽  
Yueming Cao ◽  
...  

Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases. Senescent cells interfere with cardiac function and outcome post-MI with age, but studies have not been performed in large animals, and the mechanisms are unknown. Here, we investigated the role of senescence in regulating inflammation, fibrosis, and arrhythmogenesis in young and aged infarcted rabbits. Aged rabbits exhibited increased peri-procedural mortality and arrhythmogenic electrophysiological remodeling at the infarct border zone (IBZ) compared to young rabbits. Studies of the aged infarct zone revealed persistent myofibroblast senescence and increased inflammatory signaling over a twelve-week timecourse. Senescent IBZ myofibroblasts in aged rabbits appear to be coupled to myocytes, and our computational modeling showed that senescent myofibroblast-cardiomyocyte coupling prolongs action potential duration (APD) and facilitates conduction block permissive of arrhythmias. Aged infarcted human ventricles show levels of senescence consistent with aged rabbits, and senescent myofibroblasts also couple to IBZ myocytes. Our findings suggest that senolytic drugs may mitigate arrhythmias post-MI.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alessandra Maria Lodrini ◽  
Marie-José Goumans

Despite the increasing success of interventional coronary reperfusion strategies, mortality related to acute myocardial infarction (MI) is still substantial. MI is defined as sudden death of myocardial tissue caused by an ischemic episode. Ischaemia leads to adverse remodelling in the affected myocardium, inducing metabolic and ionic perturbations at a single cell level, ultimately leading to cell death. The adult mammalian heart has limited regenerative capacity to replace lost cells. Identifying and enhancing physiological cardioprotective processes may be a promising therapy for patients with MI. Studies report an increasing amount of evidence stating the intricacy of the pathophysiology of the infarcted heart. Besides apoptosis, other cellular phenotypes have emerged as key players in the ischemic myocardium, in particular senescence, inflammation, and dedifferentiation. Furthermore, some cardiomyocytes in the infarct border zone uncouple from the surviving myocardium and dedifferentiate, while other cells become senescent in response to injury and start to produce a pro-inflammatory secretome. Enhancing electric coupling between cardiomyocytes in the border zone, eliminating senescent cells with senolytic compounds, and upregulating cardioprotective cellular processes like autophagy, may increase the number of functional cardiomyocytes and therefore enhance cardiac contractility. This review describes the different cellular phenotypes and pathways implicated in injury, remodelling, and regeneration of the myocardium after MI. Moreover, we discuss implications of the complex pathophysiological attributes of the infarcted heart in designing new therapeutic strategies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhenzhou Li ◽  
Heather L. McConnell ◽  
Teresa L. Stackhouse ◽  
Martin M. Pike ◽  
Wenri Zhang ◽  
...  

Neurovascular coupling, the process by which neuronal activity elicits increases in the local blood supply, is impaired in stroke patients in brain regions outside the infarct. Such impairment may contribute to neurological deterioration over time, but its mechanism is unknown. Using the middle cerebral artery occlusion (MCAO) model of stroke, we show that neuronal activity-evoked capillary dilation is reduced by ∼75% in the intact cortical tissue outside the infarct border. This decrease in capillary responsiveness was not explained by a decrease in local neuronal activity or a loss of vascular contractility. Inhibiting synthesis of the vasoconstrictive molecule 20-hydroxyeicosatetraenoic acid (20-HETE), either by inhibiting its synthetic enzyme CYP450 ω-hydroxylases or by increasing nitric oxide (NO), which is a natural inhibitor of ω-hydroxylases, rescued activity-evoked capillary dilation. The capillary dilation unmasked by inhibiting 20-HETE was dependent on PGE2 activation of endoperoxide 4 (EP4) receptors, a vasodilatory pathway previously identified in healthy animals. Cortical 20-HETE levels were increased following MCAO, in agreement with data from stroke patients. Inhibition of ω-hydroxylases normalized 20-HETE levels in vivo and increased cerebral blood flow in the peri-infarct cortex. These data identify 20-HETE-dependent vasoconstriction as a mechanism underlying capillary neurovascular coupling impairment after stroke. Our results suggest that the brain’s energy supply may be significantly reduced after stroke in regions previously believed to be asymptomatic and that ω-hydroxylase inhibition may restore healthy neurovascular coupling post-stroke.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1807
Author(s):  
Simon Bentsen ◽  
Andreas Clemmensen ◽  
Mathias Loft ◽  
Mette Flethøj ◽  
Karina Poulsdóttir Debes ◽  
...  

Angiogenesis is crucial in tissue repair and prevents scar tissue formation following an ischemic event such as myocardial infarction. The ischemia induces formation of new capillaries, which have high expression of integrin αvβ3. [68Ga]Ga-NODAGA-E[(cRGDyK)]2 ([68Ga]Ga-RGD) is a promising PET-radiotracer reflecting angiogenesis by binding to integrin αvβ3. A Göttingen mini-pig underwent transient catheter-induced left anterior descending artery (LAD) occlusion for 120 min, and after 8 weeks was imaged on a Siemens mMR 3T PET/MR system. A large antero-septal infarction was evident by late gadolinium enhancement (LGE) on the short axis and 2–4 chamber views. The infarcted area corresponded to the area with high [68Ga]Ga-RGD uptake on the fused PET/MR images, with no uptake in the healthy myocardium. To support the hypothesis that [68Ga]Ga-RGD uptake reflects angiogenesis, biopsies were sampled from the infarct border and healthy myocardium. Expression of αvβ3 was evaluated using immunohistochemistry. The staining showed higher αvβ3 expression in the capillaries of the infarct border compared to those in the healthy myocardium. These initial data confirm in vivo detection of angiogenesis using [68Ga]Ga-RGD PET in a translational model, which overall support the method applicability when evaluating novel cardio-protective therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eric Sung ◽  
Adityo Prakosa ◽  
Natalia A. Trayanova

Aims: Disease-induced repolarization heterogeneity in infarcted myocardium contributes to VT arrhythmogenesis but how apicobasal and transmural (AB-TM) repolarization gradients additionally affect post-infarct VT dynamics is unknown. The goal of this study is to assess how AB-TM repolarization gradients impact post-infarct VT dynamics using patient-specific heart models.Method: 3D late gadolinium-enhanced cardiac magnetic resonance images were acquired from seven post-infarct patients. Models representing the patient-specific scar and infarct border zone distributions were reconstructed without (baseline) and with repolarization gradients along both the AB-TM axes. AB only and TM only models were created to assess the effects of each ventricular gradient on VT dynamics. VTs were induced in all models via rapid pacing.Results: Ten baseline VTs were induced. VT inducibility in AB-TM models was not significantly different from baseline (p>0.05). Reentry pathways in AB-TM models were different than baseline pathways due to alterations in the location of conduction block (p<0.05). VT exit sites in AB-TM models were different than baseline VT exit sites (p<0.05). VT inducibility of AB only and TM only models were not significantly different than that of baseline (p>0.05) or AB-TM models (p>0.05). Reentry pathways and VT exit sites in AB only and TM only models were different than in baseline (p<0.05). Lastly, repolarization gradients uncovered multiple VT morphologies with different reentrant pathways and exit sites within the same structural, conducting channels.Conclusion: VT inducibility was not impacted by the addition of AB-TM repolarization gradients, but the VT reentrant pathway and exit sites were greatly affected due to modulation of conduction block. Thus, during ablation procedures, physiological and pharmacological factors that impact the ventricular repolarization gradient might need to be considered when targeting the VTs.


2021 ◽  
Author(s):  
Shah Ali ◽  
Waleed Elhelaly ◽  
Ngoc Uyen Nhi Nguyen ◽  
Shujuan Li ◽  
Ivan Menendez-Montes ◽  
...  

To identify non cellautonomous effectors of cardiomyocyte mitosis, we analyzed a transcriptomic screen of regenerating and non regenerating neonatal hearts for differentially expressed secreted proteins, which we hypothesized could include candidate mitogens. We identified and validated IGFBP3, which has a Janus-like stabilizing and sequestering effect on IGF growth factors, as a neonatal injury associated secreted protein. IGFBP3 is expressed by and secreted from vascular cells in the neonatal heart after cardiac injury, notably in the infarct border zone. We found that global deletion of IGFBP3 blunted neonatal regeneration, while gain of function experiments using recombinant IGFBP3 and a transgenic mouse model uncovered a pro mitotic effect of IGFBP3 on cardiomyocytes in vitro and in the adult heart. We show that site specific expression of an IGFBP3 protease (PAPPA2) and its inhibitor (STC2) coordinate the spatial release of IGF2 in the infarct zone to regio selectively activate the INSR/ERK/AKT cell growth pathways in cardiomyocytes. Collectively, our work highlights the spatiotemporal orchestration of endothelial cardiomyocyte interactions that are required for neonatal cardiac regeneration.


2021 ◽  
Author(s):  
Zhenzhou Li ◽  
Heather L McConnell ◽  
Teresa L Stackhouse ◽  
Martin M Pike ◽  
Wenri Zhang ◽  
...  

Neurovascular coupling, the process by which neuronal activity elicits increases in the local blood supply, is impaired in stroke patients in brain regions outside the infarct. Such impairment may contribute to neurological deterioration over time, but its mechanism is unknown. Using the middle cerebral artery occlusion (MCAO) model of stroke, we show that neuronal activity-evoked capillary dilation is reduced by ~75% in the intact cortical tissue outside the infarct border. This decrease in capillary responsiveness was not explained by a decrease in local neuronal activity or a loss of vascular contractility. Inhibiting synthesis of the vasoconstrictive molecule 20-HETE, either by inhibiting its synthetic enzyme CYP450 ω-hydroxylases or by increasing nitric oxide (NO), which is a natural inhibitor of ω-hydroxylases, rescued activity-evoked capillary dilation. The capillary dilation unmasked by inhibiting 20-HETE was dependent on PGE2 activation of EP4 receptors, a vasodilatory pathway previously identified in healthy animals. Cortical 20-HETE levels were increased following MCAO, in agreement with data from stroke patients. Inhibition of ω-hydroxylases normalized 20-HETE levels in vivo and increased cerebral blood flow in the peri-infarct cortex. These data identify 20-HETE-dependent vasoconstriction as a mechanism underlying neurovascular coupling impairment after stroke. Our results suggest that the brain's energy supply may be significantly reduced after stroke in regions previously believed to be asymptomatic and that ω-hydroxylase inhibition may restore healthy neurovascular coupling post-stroke.


Sign in / Sign up

Export Citation Format

Share Document