scholarly journals Directed graph mapping exceeds phase mapping in discriminating true and false rotors detected with a basket catheter in a complex in-silico excitation pattern

Author(s):  
Enid Van Nieuwenhuyse ◽  
Laura Martinez-Mateu ◽  
Javier Saiz ◽  
Alexander V. Panfilov ◽  
Nele Vandersickel
EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
E Van Nieuwenhuyse ◽  
L Martinez-Mateu ◽  
J Saiz ◽  
A V Panfilov ◽  
N Vandersickel

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): Supported in part by Dirección General de Polı́tica Cientı́fica de la Generalitat Valenciana PROMETEU 2020/043 Background In realistic in-silico studies (Figure1, top row) it was shown that phase mapping PM (Figure 1, A) can detect the correct rotor as well as phantom rotors as an artefact of interpolation or due to the far field (Figure 1, B). After interpretation of the LAT, the far field detections could not be distinguished from the true rotor driving the excitation pattern. This can contribute to failure in Atrial Fibrillation (AF) ablation procedures. Objective We tested if the recently developed tool Directed Graph mapping (DGM) is less prone to far-field effects and interpolation artefacts than PM on the same in-silico data. DGM represents the excitation pattern as a directed network, from which the rotational activity is detected as cycles in that network. Methods Starting from the electrograms (EGMs) of the 64 electrode basket catheter, we interpolated to 957 equidistant electrodes and calculated local activation times (LATs) of the interpolated EGMs (Figure 1, C). We varied the minimal allowed conduction velocity and calculated the corresponding networks for the complete simulation time. Detections were considered as correct if they were located in the same region of the true core of the phasemaps. The false detections were classified in multiple different regions (Figure 1, D). Results We find that by proper choice of CVs in the graphs it is possible to achieve a 80% detection of true rotors with 26% detection of false rotors. Reducing restrictions on the CVs increased the detection rate of the false rotors. False rotors due to artifacts were not detected by DGM (Figure 1, last row). Conclusion DGM is able to distinguish between true and far field rotors. False detections due to interpolation artifacts as seen in the PM protocol were not observed. The velocity limits in the graph construction play a keyrole in eliminating the far field effects. Abstract Figure 1


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Noel Pérez ◽  
Karl Muffly ◽  
Stephen E. Saddow

Abstract Background Renal denervation with radiofrequency ablation has become an accepted treatment for drug-resistant hypertension. However, there is a continuing need to develop new catheters for high-accuracy, targeted ablation. We therefore developed a radiofrequency bipolar electrode for controlled, targeted ablation through Joule heating induction between 60 and 100 °C. The bipolar design can easily be assembled into a basket catheter for deployment inside the renal artery. Methods Finite element modeling was used to determine the optimum catheter design to deliver a minimum ablation zone of 4 mm (W) × 10 mm (L) × 4 mm (H) within 60 s with a 500 kHz, 60 Vp-p signal, and 3 W maximum. The in silico model was validated with in vitro experiments using a thermochromic phantom tissue prepared with polyacrylamide gel and a thermochromic ink additive that permanently changes from pink to magenta when heated over 60 °C. Results The in vitro ablation zone closely matched the size and shape of the simulated area. The new electrode design directs the current density towards the artery walls and tissue, reducing unwanted blood temperature increases by focusing energy on the ablation zone. In contrast, the basket catheter design does not block renal flow during renal denervation. Conclusions This computational model of radiofrequency ablation can be used to estimate renal artery ablation zones for highly targeted renal denervation in patients with resistant hypertension. Furthermore, this innovative catheter has short ablation times and is one of the lowest power requirements of existing designs to perform the ablation.


2019 ◽  
Vol 10 ◽  
Author(s):  
Nele Vandersickel ◽  
Enid Van Nieuwenhuyse ◽  
Nico Van Cleemput ◽  
Jan Goedgebeur ◽  
Milad El Haddad ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Tobias Oesterlein ◽  
Daniel Frisch ◽  
Axel Loewe ◽  
Gunnar Seemann ◽  
Claus Schmitt ◽  
...  

Whole-chamber mapping using a 64-pole basket catheter (BC) has become a featured approach for the analysis of excitation patterns during atrial fibrillation. A flexible catheter design avoids perforation but may lead to spline bunching and influence coverage. We aim to quantify the catheter deformation and endocardial coverage in clinical situations and study the effect of catheter size and electrode arrangement using an in silico basket model. Atrial coverage and spline separation were evaluated quantitatively in an ensemble of clinical measurements. A computational model of the BC was implemented including an algorithm to adapt its shape to the atrial anatomy. Two clinically relevant mapping positions in each atrium were assessed in both clinical and simulated data. The simulation environment allowed varying both BC size and electrode arrangement. Results showed that interspline distances of more than 20 mm are common, leading to a coverage of less than 50% of the left atrial (LA) surface. In an ideal in silico scenario with variable catheter designs, a maximum coverage of 65% could be reached. As spline bunching and insufficient coverage can hardly be avoided, this has to be taken into account for interpretation of excitation patterns and development of new panoramic mapping techniques.


Author(s):  
Enid Van Nieuwenhuyse ◽  
Teresa Strisciuglio ◽  
Giuseppe Lorenzo ◽  
Milad El Haddad ◽  
Jan Goedgebeur ◽  
...  
Keyword(s):  

2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

Author(s):  
Nils Lachmann ◽  
Diana Stauch ◽  
Axel Pruß

ZusammenfassungDie Typisierung der humanen Leukozytenantigene (HLA) vor Organ- und hämatopoetischer Stammzelltransplantation zur Beurteilung der Kompatibilität von Spender und Empfänger wird heutzutage in der Regel molekulargenetisch mittels Amplifikation, Hybridisierung oder Sequenzierung durchgeführt. Durch die exponentiell steigende Anzahl an neu entdeckten HLA-Allelen treten vermehrt Mehrdeutigkeiten, sogenannte Ambiguitäten, in der HLA-Typisierung auf, die aufgelöst werden müssen, um zu einem eindeutigen Ergebnis zu gelangen. Mithilfe kategorisierter Allelfrequenzen (häufig, gut dokumentiert und selten) in Form von CWD-Allellisten (CWD: common and well-documented) ist die In-silico-Auflösung von Ambiguitäten durch den Ausschluss seltener Allele als mögliches Ergebnis realisierbar. Ausgehend von einer amerikanischen CWD-Liste existieren derzeit auch eine europäische, deutsche und chinesische CWD-Liste, die jeweils regionale Unterschiede in den Allelfrequenzen erkennbar werden lassen. Durch die Anwendung von CWD-Allelfiltern in der klinischen HLA-Typisierung können Zeit, Kosten und Arbeitskraft eingespart werden.


Sign in / Sign up

Export Citation Format

Share Document