Erratum to “Modeling and simulation of saline extractive distillation columns for the production of absolute ethanol” [Comput. Chem. Eng. 27 (2003) 527–549]

2004 ◽  
Vol 28 (12) ◽  
pp. 2851
Author(s):  
Mario Llano-Restrepo ◽  
Jaime Aguilar-Arias
2019 ◽  
Vol 146 ◽  
pp. 391-403 ◽  
Author(s):  
Elena A. Anokhina ◽  
Andrey V. Timoshenko ◽  
Alexander Yu. Akishin ◽  
Anna V. Remizova

2020 ◽  
Vol 34 (3) ◽  
pp. 149-167
Author(s):  
João Paulo Henrique ◽  
Ruy de Sousa Jr. ◽  
Argimiro Resende Secchi ◽  
Mauro Antonio da Silva Sá Ravagnani ◽  
Abdessamad Barbara ◽  
...  

The divided wall column (DWC) can achieve sharp separations of three or more components in a single shell, substituting conventional sequences of two or more binary<br /> distillation columns, with lower expenses. Despite these advantages, DWC models are not available in commercial chemical process simulators. To simulate DWC, users must employ instances of conventional column model and couple them in different configurations. In this paper, a DWC model was developed in EMSO (Environment for Modeling, Simulation and Optimization). DWC model was then used for simulating the separation of an equimolar mixture of three hydrocarbons. Results show that, depending on the number of trays, DWC presented energy savings compared to two ordinary distillation columns. Better separation was obtained when the number of divided trays was close to half the number of total trays. However, the liquid and vapor flow rates split into the divided section play a key role in the separation.


Author(s):  
V. M. Raeva ◽  
D. I. Sukhov

Variants of the extractive distillation of chloroform - methanol - tetrahydrofuran equimolar mixture with industrial separating agents are considered. The basic system shows opposite deviations from the ideal behavior, because it contains binary azeotropes with minimum and maximum boiling points (3.3.1-4 system according to Serafimov’s classification). The choice of selective substances for extractive distillation was carried out taking into account the concentration dependences of the excess molar Gibbs energy of the binary constituents of the derivative system “chloroform - methanol - tetrahydrofuran - industrial test agent (ethylene glycol (EG), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (N-MP))” at 101.32 kPa. Based on the results of the evaluation of the thermodynamic criterion, DMSO and N-MP are recommended. Both agents show selective effect when separating two binary constituents. EG is selective only with respect to chloroform-tetrahydrofuran mixture. Since the tested agents show different selective effects, the final agent choice determines the qualitative composition of the product flows in the column for the extractive distillation of the three-component mixture (the first column of the flowsheet) and, accordingly, the structure of the total flowsheet. The schemes consist of two two-column complexes for extractive distillation (for the basic three-component mixture and for the binary mixture). The maximum contribution to the total reboiler energy consumption of the distillation columns is made by the first extractive distillation column: 65% (EG), 53% (N-MP) and 24% (DMSO). The use of the most selective agent reduces the energy consumption of this column: the reboiler load is maximal in the case of EG, in comparison with which the load is 47% lower in the case of N-MP and 76% lower in the case of DMSO.


Author(s):  
V. M. Raeva ◽  
A. M. Dubrovsky

Objectives. Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions. The ternary system contains two minimally boiling azeotropes that exist in a vapor–liquid phase equilibrium. To evaluate the selective effect of glycerol, the phase equilibria of the methanol–tetrahydrofuran–water and methanol–tetrahydrofuran–water–glycerol systems at 101.32 kPa were studied.Methods. The calculations were carried out in the Aspen Plus V.9.0 software package. The vapor–liquid equilibria were simulated using the non-random two-liquid (NRTL) equation with the binary interaction parameters of the software package database. To account for the non-ideal behavior of the vapor phase, the Redlich–Kwong equation of state was used. The calculations of the extractive distillation schemes were carried out at 101.32 kPa.Results. The conceptual flowsheets of extractive distillation are proposed. The flowsheets consist of three (schemes I–III) or four (scheme IV) distillation columns operating at atmospheric pressure. In schemes I and II, the extractive distillation of the mixtures is carried out with tetrahydrofuran isolation occurring in the distillate stream. Further separation in the schemes differs in the order of glycerol isolation: in the third column for scheme I (traditional extractive distillation complex) or in the second column for scheme II (two-column extractive distillation complex + methanol/water separation column). Sсheme III caters to the complete dehydration of the basic ternary mixtures, followed by the extractive distillation of the azeotropic methanol–tetrahydrofuran system, also with glycerol. Sсheme IV includes a preconcentration column (for the partial removal of water) and a traditional extractive distillation complex.Conclusions. According to the criterion of least energy consumption for separation (the total load of the reboilers of distillation columns), sсheme I (a traditional complex of extractive distillation) is recommended. Additionally, the energy expended for the separation of the basic equimolar mixture using glycerol as the extractive agent was compared with that expended using another selective agent: 1,2-ethanediol. Glycerol is an effective extractive agent because it reduces energy consumption, in comparison with 1,2-ethanediol, by more than 5%.


2014 ◽  
Vol 202 (9) ◽  
pp. 1191-1199 ◽  
Author(s):  
Marcella Feitosa De Figueiredo ◽  
Karoline Dantas Brito ◽  
Wagner Brandão Ramos ◽  
Luís Gonzaga Sales Vasconcelos ◽  
Romildo Pereira Brito

Sign in / Sign up

Export Citation Format

Share Document