distillation flowsheets
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Dmitry A. Ryzhkin ◽  
Valentina M. Raeva

A comparative analysis of energy consumption for extractive distillation flowsheets was carried out. This was done by the example of methanol - ethanol - acetonitrile - mixture. These solvents are used in pharmaceutical industries. The basic system methanol - ethanol - acetonitrile - water contains four binary and one ternary minimum-boiling azeotropes. Pressure change has almost no effect on the location of separatric surfaces. Therefore, extractive distillation should be used to separate solvents mixtures of any composition. Industrial entrainers dimethyl sulfoxide and glycerol are considered as selective agents. The effect of entrainer on vapor-liquid equilibrium at 30 and 101.32 kPa was evaluated by the relative volatility of the components forming azeotropes and the selectivity of the agents. The simulation was carried out on the Aspen Plus V.10.0 program environment. Two extractive distillation flosheets for the methanol - ethanol - acetonitrile - water separation are investigated. Both schemes include a two-column complex for the extractive distillation of the base mixture: in the first column, organic solvents are separated from water, and in the second column, the agent is regenerated. For subsequent separation of acetonitrile, extractive distillation with dimethyl sulfoxide or glycerol is also used. But separation of methanol-ethanol - entrainert zeotropic mixtures differs in the order of separation of components in schemes I and II. In scheme I, regeneration of the agent and further separation of the alcohol mixture is provided, in scheme II, methanol is first isolated, and then ethanol is separated from the agent. The optimized results for both schemes at columns pressures 30 and 101.32 kPa are performed. Different sets of selective agents introduced into extractive distillation columns are considered. The concept of an effective set of entrainers is introduced. The evaluation of the design alternatives need the assessment of energy demands. Total energy consumption for separation (reboiler duty) for the scheme II at 35-38% higher than values for scheme I. On the criterion of the minimum total energy consumption for the separation the scheme I was recommended: pressure columns 30 kPa, effective set of entrainers: glycerol for dehydration of the base mixture and dimethyl sulfoxide for acetonitrile isolation.


Author(s):  
Elena A. Anokhina ◽  
Danila G. Rudakov ◽  
Atmir A. Afaunov ◽  
Andrey V. Timoshenko

2020 ◽  
Vol 54 (5) ◽  
pp. 818-827
Author(s):  
A. V. Frolkova ◽  
A. K. Frolkova ◽  
V. I. Zhuchkov ◽  
Ye. G. Makhnarilova

Author(s):  
V. M. Raeva ◽  
A. M. Dubrovsky

Objectives. Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions. The ternary system contains two minimally boiling azeotropes that exist in a vapor–liquid phase equilibrium. To evaluate the selective effect of glycerol, the phase equilibria of the methanol–tetrahydrofuran–water and methanol–tetrahydrofuran–water–glycerol systems at 101.32 kPa were studied.Methods. The calculations were carried out in the Aspen Plus V.9.0 software package. The vapor–liquid equilibria were simulated using the non-random two-liquid (NRTL) equation with the binary interaction parameters of the software package database. To account for the non-ideal behavior of the vapor phase, the Redlich–Kwong equation of state was used. The calculations of the extractive distillation schemes were carried out at 101.32 kPa.Results. The conceptual flowsheets of extractive distillation are proposed. The flowsheets consist of three (schemes I–III) or four (scheme IV) distillation columns operating at atmospheric pressure. In schemes I and II, the extractive distillation of the mixtures is carried out with tetrahydrofuran isolation occurring in the distillate stream. Further separation in the schemes differs in the order of glycerol isolation: in the third column for scheme I (traditional extractive distillation complex) or in the second column for scheme II (two-column extractive distillation complex + methanol/water separation column). Sсheme III caters to the complete dehydration of the basic ternary mixtures, followed by the extractive distillation of the azeotropic methanol–tetrahydrofuran system, also with glycerol. Sсheme IV includes a preconcentration column (for the partial removal of water) and a traditional extractive distillation complex.Conclusions. According to the criterion of least energy consumption for separation (the total load of the reboilers of distillation columns), sсheme I (a traditional complex of extractive distillation) is recommended. Additionally, the energy expended for the separation of the basic equimolar mixture using glycerol as the extractive agent was compared with that expended using another selective agent: 1,2-ethanediol. Glycerol is an effective extractive agent because it reduces energy consumption, in comparison with 1,2-ethanediol, by more than 5%.


Author(s):  
V. M. Raeva ◽  
O. V. Gromova

In this paper, extractive distillation flowsheets for water–formic acid–acetic acid mixtures were designed. Flowsheets not involving preliminary dehydration were considered, and the relative volatilities of the components in the presence of sulfolane were analyzed. The result of extractive distillation depends on the amount of sulfolane. The structure of the flowsheet is determined by the results of the basic ternary mixture extractive distillation. In three-column flowsheets (schemes I, II), water is isolated in the distillate of the extractive distillation column. In the second column, distillation of the formic acid–acetic acid–sulfolane mixture is carried out, yielding formic acid (90 wt %) and acetic acid (80 wt %). The recycled flow is returned to the first column. Dilution of the formic acid–acetic acid–sulfolane mixture with sulfolane (second column of flowsheet II) allows for acids of higher quality (main substance content equal to or more than 98.5 wt %) to be obtained. Flowsheet III includes four columns and two recycling stages. First, the water–formic acid mixture is isolated in the distillate of the extractive distillation column. Then, water and formic acid are separated in a two-column complex by extractive distillation, also with sulfolane. We were carrying out calculations for column working pressure 101.32 and 13.33 kPa. To prevent thermal decomposition of sulfolane, working pressure for regeneration columns was always 13.33 kPa. The extractive distillation column of the basic three-component mixture is the main factor contributing to the total energy consumption for separation (in all schemes).


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksandra Yu. Sazonova ◽  
Valentina M. Raeva ◽  
Alla K. Frolkova

AbstractThe separation of two systems containing minimum boiling azeotropes (acetone-methanol and tetrahydrofuran (THF)-water) was performed using extractive distillation with a heavy boiling mixed entrainer consisting of two compounds. The entrainer constituents did not form new azeotropes with each other and with the components of the original mixture. An analysis of the mixed entrainer influence on the vapor-liquid equilibrium (VLE) and relative volatility provides an understanding of the cases in which the separation by extractive distillation (ED) in the presence of the mixed entrainer revealed energy benefits over their individual constituents. New results for application of the mixed entrainer monoethanolamine (MEA)-ethylene glycol (EG) and dimethylsulphoxide (DMSO)-glycerol for the separation of THF-water and acetone-methanol, respectively, are presented for the first time. The individual selective agents were chosen from the efficient entrainers discussed in the literature. The calculations were performed using the platform Aspen Plus 7.3. Different extractive distillation flowsheets are provided for the zeotropic mixed agents, viz. with two or three columns. For the ED of the binary mixtures investigated, the structures of the different separation schemes, the operating parameters of the columns, and the energy consumptions are presented and compared. The application of the mixed entrainer MEA-EG fed into the ED column with pre-mixing can be recommended, providing up to 1.7 % of energy saving for acetone-methanol separation. In the case of THF-water, the mixed entrainer DMSO-glycerol provides 0.8 % of energy saving. The separate inputs of the individual constituents of the mixed entrainer led to a significant increase in the energy consumptions of the flowsheet because of the third regeneration column, hence this flowsheet cannot be recommended for use in the separation of both mixtures.


2015 ◽  
Vol 49 (1) ◽  
pp. 41-49 ◽  
Author(s):  
L. A. Serafimov ◽  
T. V. Chelyuskina ◽  
P. O. Mavletkulova

2011 ◽  
Vol 45 (6) ◽  
pp. 842-857 ◽  
Author(s):  
M. I. Skvortsova ◽  
A. V. Timoshenko ◽  
D. G. Rudakov

Sign in / Sign up

Export Citation Format

Share Document