Effect of Solvent Content on the Separation and the Energy Consumption of Extractive Distillation Columns

2014 ◽  
Vol 202 (9) ◽  
pp. 1191-1199 ◽  
Author(s):  
Marcella Feitosa De Figueiredo ◽  
Karoline Dantas Brito ◽  
Wagner Brandão Ramos ◽  
Luís Gonzaga Sales Vasconcelos ◽  
Romildo Pereira Brito
2016 ◽  
Vol 55 (43) ◽  
pp. 11315-11328 ◽  
Author(s):  
Wagner B. Ramos ◽  
Marcella F. Figueirêdo ◽  
Karoline D. Brito ◽  
Stefano Ciannella ◽  
Luis G. S. Vasconcelos ◽  
...  

Author(s):  
V. M. Raeva ◽  
D. I. Sukhov

Variants of the extractive distillation of chloroform - methanol - tetrahydrofuran equimolar mixture with industrial separating agents are considered. The basic system shows opposite deviations from the ideal behavior, because it contains binary azeotropes with minimum and maximum boiling points (3.3.1-4 system according to Serafimov’s classification). The choice of selective substances for extractive distillation was carried out taking into account the concentration dependences of the excess molar Gibbs energy of the binary constituents of the derivative system “chloroform - methanol - tetrahydrofuran - industrial test agent (ethylene glycol (EG), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (N-MP))” at 101.32 kPa. Based on the results of the evaluation of the thermodynamic criterion, DMSO and N-MP are recommended. Both agents show selective effect when separating two binary constituents. EG is selective only with respect to chloroform-tetrahydrofuran mixture. Since the tested agents show different selective effects, the final agent choice determines the qualitative composition of the product flows in the column for the extractive distillation of the three-component mixture (the first column of the flowsheet) and, accordingly, the structure of the total flowsheet. The schemes consist of two two-column complexes for extractive distillation (for the basic three-component mixture and for the binary mixture). The maximum contribution to the total reboiler energy consumption of the distillation columns is made by the first extractive distillation column: 65% (EG), 53% (N-MP) and 24% (DMSO). The use of the most selective agent reduces the energy consumption of this column: the reboiler load is maximal in the case of EG, in comparison with which the load is 47% lower in the case of N-MP and 76% lower in the case of DMSO.


Author(s):  
V. M. Raeva ◽  
A. M. Dubrovsky

Objectives. Synthesis and comparative analysis of the extractive distillation flowsheets for aqueous mixtures of solvents utilized in pharmaceutical industries using the example of a methanol−tetrahydrofuran−water system with various compositions. The ternary system contains two minimally boiling azeotropes that exist in a vapor–liquid phase equilibrium. To evaluate the selective effect of glycerol, the phase equilibria of the methanol–tetrahydrofuran–water and methanol–tetrahydrofuran–water–glycerol systems at 101.32 kPa were studied.Methods. The calculations were carried out in the Aspen Plus V.9.0 software package. The vapor–liquid equilibria were simulated using the non-random two-liquid (NRTL) equation with the binary interaction parameters of the software package database. To account for the non-ideal behavior of the vapor phase, the Redlich–Kwong equation of state was used. The calculations of the extractive distillation schemes were carried out at 101.32 kPa.Results. The conceptual flowsheets of extractive distillation are proposed. The flowsheets consist of three (schemes I–III) or four (scheme IV) distillation columns operating at atmospheric pressure. In schemes I and II, the extractive distillation of the mixtures is carried out with tetrahydrofuran isolation occurring in the distillate stream. Further separation in the schemes differs in the order of glycerol isolation: in the third column for scheme I (traditional extractive distillation complex) or in the second column for scheme II (two-column extractive distillation complex + methanol/water separation column). Sсheme III caters to the complete dehydration of the basic ternary mixtures, followed by the extractive distillation of the azeotropic methanol–tetrahydrofuran system, also with glycerol. Sсheme IV includes a preconcentration column (for the partial removal of water) and a traditional extractive distillation complex.Conclusions. According to the criterion of least energy consumption for separation (the total load of the reboilers of distillation columns), sсheme I (a traditional complex of extractive distillation) is recommended. Additionally, the energy expended for the separation of the basic equimolar mixture using glycerol as the extractive agent was compared with that expended using another selective agent: 1,2-ethanediol. Glycerol is an effective extractive agent because it reduces energy consumption, in comparison with 1,2-ethanediol, by more than 5%.


2015 ◽  
Vol 54 (51) ◽  
pp. 12908-12919 ◽  
Author(s):  
Yinglong Wang ◽  
Shisheng Liang ◽  
Guangle Bu ◽  
Wei Liu ◽  
Zhen Zhang ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Suksun Amornraksa ◽  
Ittipat Subsaipin ◽  
Lida Simasatitkul ◽  
Suttichai Assabumrungrat

Abstract Separation process is very crucial in bioethanol production as it consumes the highest energy in the process. Unlike other works, this research systematically designed a suitable separation process for bioethanol production from corn stover by using thermodynamic insight. Two separation processes, i.e., extractive distillation (case 2) and pervaporation (case 3), were developed and compared with conventional molecular sieve (case 1). Process design and simulation were done by using Aspen Plus program. The process evaluation was done not only in terms of energy consumption and process economics but also in terms of environmental impacts. It was revealed that pervaporation is the best process in all aspects. Its energy consumption and carbon footprint are 60.8 and 68.34% lower than case 1, respectively. Its capital and production costs are also the lowest, 37.0 and 9.88% lower than case 1.


2019 ◽  
Vol 146 ◽  
pp. 391-403 ◽  
Author(s):  
Elena A. Anokhina ◽  
Andrey V. Timoshenko ◽  
Alexander Yu. Akishin ◽  
Anna V. Remizova

2005 ◽  
Vol 66 (2) ◽  
pp. 200-208 ◽  
Author(s):  
C. Bouyahiaoui ◽  
L. I. Grigoriev ◽  
F. Laaouad ◽  
A. Khelassi

Sign in / Sign up

Export Citation Format

Share Document