A hierarchical constrained reinforcement learning for optimization of bitumen recovery rate in a primary separation vessel

2020 ◽  
Vol 140 ◽  
pp. 106939
Author(s):  
Hareem Shafi ◽  
Kirubakaran Velswamy ◽  
Fadi Ibrahim ◽  
Biao Huang
Author(s):  
Wenliang Guo ◽  
Daqiang Cang ◽  
Lingling Zhang ◽  
Junxiang Guo

AbstractRare earth (RE) and iron minerals in tailings exhibit fine embedded granularity and are closely associated with silicates, carbonates, and other lode minerals, which are difficult to be recycled. Studies of these tailings led to some new processes of ore dressing, involving grinding, RE flotation, strong magnetic separation, and positive iron flotation. In this closed circuit process, RE and iron minerals were separated after grinding, and the materials resulted from the flotation of small-sized RE and iron mineral particles were accurately controlled using a combination of inhibitors, dispersants, pH regulators, and collector agents. The ore dressing were ground to a fineness of 0.045 mm, which was a process accounting for 95.6% of the material. The amount of water glass, NXJ (a combination of sodium carbonate mixed with a fine mud dispersant), and BGH (hydroxamic acid collector, a combination of 3-carboxy-2-naphthylhydroxamic acid and C5-9 hydroxamic acid) used in the primary separation of RE were 2.4 kg/t, 2.5 kg/t, and 2.4 kg/t, respectively. The dosages of ammonium fluorosilicate and GXY (fatty acid collector, a combination of sodium oleate mixed with oxidized paraffin soap) used with iron coarse were 2.2 kg/t and 1.2 kg/t, respectively. The RE collectors achieved chemical separation of Ce, La, and other particles and formed stable five-membered cyclic chelates. Consequently, through the closed circuit experiment, the RE grade and recovery rate in the RE concentrate were improved to 50.3 and 61.6%, respectively. The total iron (TFe) grade and recovery rate in the TFe concentrate were improved to 64.0 and 30.0%, respectively, and other useful metals were also enriched; this process managed secondary recycling of RE and TFe possible, leading to improvements in resource utilization.


Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document