scholarly journals High-fidelity aerodynamic shape optimization using efficient orthogonal modal design variables with a constrained global optimizer

2017 ◽  
Vol 143 ◽  
pp. 1-15 ◽  
Author(s):  
D.J. Poole ◽  
C.B. Allen ◽  
T.C.S. Rendall
2021 ◽  
Vol 26 (2) ◽  
pp. 34
Author(s):  
Isaac Gibert Martínez ◽  
Frederico Afonso ◽  
Simão Rodrigues ◽  
Fernando Lau

The objective of this work is to study the coupling of two efficient optimization techniques, Aerodynamic Shape Optimization (ASO) and Topology Optimization (TO), in 2D airfoils. To achieve such goal two open-source codes, SU2 and Calculix, are employed for ASO and TO, respectively, using the Sequential Least SQuares Programming (SLSQP) and the Bi-directional Evolutionary Structural Optimization (BESO) algorithms; the latter is well-known for allowing the addition of material in the TO which constitutes, as far as our knowledge, a novelty for this kind of application. These codes are linked by means of a script capable of reading the geometry and pressure distribution obtained from the ASO and defining the boundary conditions to be applied in the TO. The Free-Form Deformation technique is chosen for the definition of the design variables to be used in the ASO, while the densities of the inner elements are defined as design variables of the TO. As a test case, a widely used benchmark transonic airfoil, the RAE2822, is chosen here with an internal geometric constraint to simulate the wing-box of a transonic wing. First, the two optimization procedures are tested separately to gain insight and then are run in a sequential way for two test cases with available experimental data: (i) Mach 0.729 at α=2.31°; and (ii) Mach 0.730 at α=2.79°. In the ASO problem, the lift is fixed and the drag is minimized; while in the TO problem, compliance minimization is set as the objective for a prescribed volume fraction. Improvements in both aerodynamic and structural performance are found, as expected: the ASO reduced the total pressure on the airfoil surface in order to minimize drag, which resulted in lower stress values experienced by the structure.


2017 ◽  
Vol 34 (5) ◽  
pp. 1485-1500
Author(s):  
Leifur Leifsson ◽  
Slawomir Koziel

Purpose The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models. Design/methodology/approach The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments. Findings Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches. Originality/value The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.


2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840044
Author(s):  
Jing Wang ◽  
Fangfang Xie ◽  
Yao Zheng ◽  
Jifa Zhang

In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.


2013 ◽  
Vol 390 ◽  
pp. 121-128 ◽  
Author(s):  
Jun Qiang Bai ◽  
Song Chen

The method of applying direct manipulated FFD (DFFD) technique into aerodynamic shape optimization has been proposed and researched. Due to the disadvantage of the original FFD method within which the geometrical manipulation is not direct and intuitive, the DFFD approach has been developed by solving each displacement of the FFD control points with some specified geometry points movements, so that the deformation of the target geometry could be directly manipulated. Besides, it has been illustrated that by DFFD method a relatively small number of design variables together with high order FFD control frame could be accomplished. The study cases has shown that applying this method in aerodynamic shape optimization of airfoil for drag reduction is of good feasibility and result, and could be coupled with effective geometrical constraints like airfoil thickness.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 106
Author(s):  
Farzad Mohebbi ◽  
Ben Evans ◽  
Mathieu Sellier

This study presents an extension of a previous study (On an Exact Step Length in Gradient-Based Aerodynamic Shape Optimization) to viscous transonic flows. In this work, we showed that the same procedure to derive an explicit expression for an exact step length βexact in a gradient-based optimization method for inviscid transonic flows can be employed for viscous transonic flows. The extended numerical method was evaluated for the viscous flows over the transonic RAE 2822 airfoil at two common flow conditions in the transonic regime. To do so, the RAE 2822 airfoil was reconstructed by a Bezier curve of degree 16. The numerical solution of the transonic turbulent flow over the airfoil was performed using the solver ANSYS Fluent (using the Spalart–Allmaras turbulence model). Using the proposed step length, a gradient-based optimization method was employed to minimize the drag-to-lift ratio of the airfoil. The gradient of the objective function with respect to design variables was calculated by the finite-difference method. Efficiency and accuracy of the proposed method were investigated through two test cases.


Sign in / Sign up

Export Citation Format

Share Document