Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body

2018 ◽  
Vol 172 ◽  
pp. 483-491 ◽  
Author(s):  
M.P. Galanin ◽  
V.T. Zhukov ◽  
N.V. Klyushnev ◽  
K.S. Kuzmina ◽  
V.V. Lukin ◽  
...  
Author(s):  
Junye Li ◽  
Kan Zhou ◽  
Wei Li

Abstract An experimental investigation of subcooled flow boiling in a large width-to-height-ratio, one-sided heating rectangular mini-gap channel was conducted with deionized water as the working fluid. The super-hydrophobicity micro-porous structured copper surface was utilized in the experiments. High speed flow visualization was conducted to illustrate the effects of heat flux and mass rate on the heat transfer coefficient and flow pattern on the surfaces. The mass fluxes were in the range of 200–500 kg/m2s, the wall heat fluxes were spanned from 40–400 kW/m2. With increments of imposed heat flux, the slopes of boiling curves for superhydrophobic micro-porous copper surfaces increased rapidly, indicating the Onset of Nucleate Boiling. Heat transfer characteristics were discussed with variation of heat fluxes and mass fluxes, the trends of which were analyzed with the aid of high speed flow visualization.


Author(s):  
M.M. Alekseeva ◽  
N.A. Brykov ◽  
I.A. Vikhrova

Currently, the creation of new high-speed aircraft is of great interest. The development of such aircraft is associated with the need for experiments and flight tests. The organization of real physical experiments in the field of high speeds is fraught with significant difficulties that can be solved using the numerical simulation method, which makes it possible to significantly simplify the process of creating new products. When developing a high-speed aircraft, it is necessary to take into account the specific aerodynamic and thermophysical features of the processes occurring on the surface of the aircraft and in the shock layer. In this paper, the features of the processes at high speeds are considered on the example of solving the external and internal problems of the gas dynamics of an aircraft. Based on the specifics of these processes, we built a mathematical model that allows us to study the aerodynamics of a high-speed flow around a body in dense layers of the atmosphere and the processes that occur in the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document