Performance assessment and optimization of seepage control system: A numerical case study for Kala underground powerhouse

2014 ◽  
Vol 55 ◽  
pp. 306-315 ◽  
Author(s):  
Yi Li ◽  
Yifeng Chen ◽  
Qinghui Jiang ◽  
Ran Hu ◽  
Chuangbing Zhou
Engineering ◽  
2012 ◽  
Vol 04 (08) ◽  
pp. 453-458 ◽  
Author(s):  
Olawale Saheed Ismail ◽  
Olusegun Olufemi Ajide ◽  
Fredrick Akingbesote

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2813 ◽  
Author(s):  
Ruifeng Shi ◽  
Penghui Zhang ◽  
Jie Zhang ◽  
Li Niu ◽  
Xiaoting Han

With the deterioration of the environment and the depletion of fossil fuel energy, renewable energy has attracted worldwide attention because of its continuous availability from nature. Despite this continuous availability, the uncertainty of intermittent power is a problem for grid dispatching. This paper reports on a study of the scheduling and optimization of microgrid systems for photovoltaic (PV) power and electric vehicles (EVs). We propose a mathematical model to address the uncertainty of PV output and EV charging behavior, and model scheduling optimization that minimizes the economic and environmental cost of a microgrid system. A semi-infinite dual optimization model is then used to deal with the uncertain variables, which can be solved with a robust optimization algorithm. A numerical case study shows that the security and stability of the solution obtained by robust optimization outperformed that of stochastic optimization.


Materials ◽  
2005 ◽  
Author(s):  
Kuang-Ting Hsiao

In Resin Transfer Molding (RTM), the fiber preform is first placed inside a mold cavity and is subsequently impregnated with liquid resin. After mold filling, the resin starts to cure and bind the fiber preform into a solid composite part. The cure cycle will affect the residual stress built during RTM and must be controlled. Traditionally, the cure cycle control is achieved through three steps: offline resin cure kinetics characterization, offline cure cycle optimization, and mold temperature control. Different from other traditional cure cycle control approaches, this paper presents an investigation to achieve an integrated cure kinetics characterization-control system by combining a newly developed direct cure kinetics characterization method with online cure cycle optimization. A methodology to seamlessly combine these components for a practicable online cure characterization-control system will be presented and demonstrated by a numerical case study. The accuracy and reliability of this methodology will be examined and discussed based on the results of the numerical case study.


Sign in / Sign up

Export Citation Format

Share Document