Life-cycle performance model for composites in construction

2007 ◽  
Vol 38 (2) ◽  
pp. 236-246 ◽  
Author(s):  
Deepak Richard ◽  
Taehoon Hong ◽  
Makarand Hastak ◽  
Amir Mirmiran ◽  
Ossama Salem
Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2021 ◽  
Author(s):  
Oliver Sjögren ◽  
Carlos Xisto ◽  
Tomas Grönstedt

Abstract The aim of this study is to explore the possibility of matching a cycle performance model to public data on a state-of-the-art commercial aircraft engine (GEnx-1B). The study is focused on obtaining valuable information on figure of merits for the technology level of the low-pressure system and associated uncertainties. It is therefore directed more specifically towards the fan and low-pressure turbine efficiencies, the Mach number at the fan-face, the distribution of power between the core and the bypass stream as well as the fan pressure ratio. Available cycle performance data have been extracted from the engine emission databank provided by the International Civil Aviation Organization (ICAO), type certificate datasheets from the European Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA), as well as publicly available data from engine manufacturer. Uncertainties in the available source data are estimated and randomly sampled to generate inputs for a model matching procedure. The results show that fuel performance can be estimated with some degree of confidence. However, the study also indicates that a high degree of uncertainty is expected in the prediction of key low-pressure system performance metrics, when relying solely on publicly available data. This outcome highlights the importance of statistic-based methods as a support tool for the inverse design procedures. It also provides a better understanding on the limitations of conventional thermodynamic matching procedures, and the need to complement with methods that take into account conceptual design, cost and fuel burn.


2018 ◽  
Vol 10 (10) ◽  
pp. 3753 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Victor Martin

Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc.


Sign in / Sign up

Export Citation Format

Share Document