Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression

2013 ◽  
Vol 53 ◽  
pp. 121-133 ◽  
Author(s):  
Farhad Aslani ◽  
Shami Nejadi
2005 ◽  
Vol 40 (6) ◽  
pp. 599-607 ◽  
Author(s):  
X. P Huang

The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage models are based on different simplified material strain-hardening models, which assume linear strain-hardening or power strain-hardening or a combination of these strain-hardening models. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material is proposed. The model incorporates the von Mises yield criterion, an incompressible material, and the plane strain condition. Analytic expressions for the residual stress distribution have been derived. Experimental results show that the present model has a stronger curve-fitting ability and gives a more accurate prediction. Several other models are shown to be special cases of the general model presented in this paper. The parameters needed in the model are determined by fitting the actual tensile-compressive curve of the material, and the maximum strain of this curve should closely represent the maximum equivalent strain at the inner surface of the cylinder under maximum autofrettage pressure.


2014 ◽  
Vol 597 ◽  
pp. 17-20
Author(s):  
Ikuo Ihara ◽  
Kohei Ohtsuki ◽  
Iwao Matsuya

A nanoindentation technique with a spherical indenter of tip radius 10 μm is applied to the evaluation of stress-strain curve at a local area of a pure iron under the uniaxial compressive stress exerted through the iron, and the influence of the compressive stress on the estimated stress-strain curve has been examined. A continuous multiple loading method is employed to determine the stress-strain curve. In the method, a set of 21 times of loading/unloading sequences with increasing terminal load are made and load-displacement curves with the different terminal loads from 0.1 mN to 100 mN are then continuously obtained and converted to a stress-strain curve. To examine the stress dependence of the stress-strain curve, the estimation by the nanoindentetion is performed under different uniaxial compressive stresses up to 250 MPa. It has been found that the stress-strain curve determined by the nanoindentation shifts upward as the compressive stress increases and the quantity of the shift is almost equal to the uniaxial stress acting on the iron specimen. It is also noted that the yield stress (0.2 % proof stress) estimated from the stress-strain curve increases almost proportionally to the uniaxial stress and the increase ratio tends to decrease as the stress reaches around 200 MPa.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1531-1536 ◽  
Author(s):  
Xi Xi He ◽  
Ye Lin

Compressive experiments on mortar-free grouted concrete masonry composed with hollow blocks were studies in this essay. Characteristics of compressive stress-strain curve were analyzed by utilizing test data of 15 specimens with 100% filling rate of grouted concrete. Further more, elastic modulus formula was proposed according to results of previous and present work.


2019 ◽  
Vol 10 (6) ◽  
pp. 766-791 ◽  
Author(s):  
Fatemeh FaghihKhorasani ◽  
Mohammad Zaman Kabir ◽  
Mehdi AhmadiNajafabad ◽  
Khosrow Ghavami

Purpose The purpose of this paper is to provide a method to predict the situation of a loaded element in the compressive stress curve to prevent failure of crucial elements in load-bearing masonry walls and to propose a material model to simulate a compressive element successfully in Abaqus software to study the structural safety by using non-linear finite element analysis. Design/methodology/approach A Weibull distribution function was rewritten to relate between failure probability function and axial strain during uniaxial compressive loading. Weibull distribution parameters (shape and scale parameters) were defined by detected acoustic emission (AE) events with a linear regression. It was shown that the shape parameter of Weibull distribution was able to illustrate the effects of the added fibers on increasing or decreasing the specimens’ brittleness. Since both Weibull function and compressive stress are functions of compressive strain, a relation between compressive stress and normalized cumulative AE hits was calculated when the compressive strain was available. By suggested procedures, it was possible to monitor pretested plain or random distributed short fibers reinforced adobe elements (with AE sensor and strain detector) in a masonry building under uniaxial compression loading to predict the situation of element in the compressive stress‒strain curve, hence predicting the time to element collapse by an AE sensor and a strain detector. In the predicted compressive stress‒strain curve, the peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus were predicted successfully. With a proposed material model, it was illustrated that the needed parameters for simulating a specimen in Abaqus software with concrete damage plasticity were peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus. Findings The AE cumulative hits versus strain plots corresponding to the stress‒strain curves can be divided into four stages: inactivity period, discontinuous growth period, continuous growth period and constant period, which can predict the densifying, linear, non-linear and residual stress part of the stress‒strain relationship. By supposing that the relation between cumulative AE hits and compressive strain complies with a Weibull distribution function, a linear analysis was conducted to calibrate the parameters of Weibull distribution by AE cumulative hits for predicting the failure probability as a function of compressive strain. Parameters of m and θ were able to predict the brittleness of the plain and tire fibers reinforced adobe elements successfully. The calibrated failure probability function showed sufficient representation of the cumulative AE hit curve. A mathematical model for the stress–strain relationship prediction of the specimens after detecting the first AE hit was developed by the relationship between compressive stress versus the Weibull failure probability function, which was validated against the experimental data and gave good predictions for both plain and short fibers reinforced adobe specimens. Then, the authors were able to monitor and predict the situation of an element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression loading by an AE sensor and a strain detector. The proposed model was successfully able to predict the main mechanical properties of different adobe specimens which are necessary for material modeling with concrete damage plasticity in Abaqus. These properties include peak compressive strength and its corresponding axial strain, the compressive strength and its corresponding axial strain at the point with maximum compressive Young’s modulus and the maximum compressive Young’s modulus. Research limitations/implications The authors were not able to decide about the effects of the specimens’ shape, as only cubic specimens were chosen; by testing different shape and different size specimens, the authors would be able to generalize the results. Practical implications The paper includes implications for monitoring techniques and predicting the time to the collapse of pretested elements (with AE sensor and strain detector) in a masonry structure. Originality/value This paper proposes a new method to monitor and predict the situation of a loaded element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression load by an AE sensor and a strain detector.


2008 ◽  
Vol 385-387 ◽  
pp. 521-524 ◽  
Author(s):  
Wei Wang ◽  
Li Jun Yang ◽  
Xiao Ni Wang

For the effective utilization of recycled aggregate concrete (RAC), it is necessary to correctly describe its compressive stress-strain curve (SSC) in theoretical and numerical analysis as well as engineering design of RAC structures. The objective of this study is to establish a good mathematical model for SSC of RAC. Based on energy dissipation theory, the differential governing equation of SSC is deduced and a new mathematical model is obtained. The new model can well describe both hardening type SSC and softening type SSC. It can overcome the shortcoming of the traditional model. Finally, good agreements have been found between the new model and the experimental investigations.


Sign in / Sign up

Export Citation Format

Share Document