A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material

2005 ◽  
Vol 40 (6) ◽  
pp. 599-607 ◽  
Author(s):  
X. P Huang

The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage models are based on different simplified material strain-hardening models, which assume linear strain-hardening or power strain-hardening or a combination of these strain-hardening models. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material is proposed. The model incorporates the von Mises yield criterion, an incompressible material, and the plane strain condition. Analytic expressions for the residual stress distribution have been derived. Experimental results show that the present model has a stronger curve-fitting ability and gives a more accurate prediction. Several other models are shown to be special cases of the general model presented in this paper. The parameters needed in the model are determined by fitting the actual tensile-compressive curve of the material, and the maximum strain of this curve should closely represent the maximum equivalent strain at the inner surface of the cylinder under maximum autofrettage pressure.

Author(s):  
Qi-Wei Xia ◽  
Jian-Guo Gong ◽  
Fu-Zhen Xuan

This work is to address the creep analysis for components at elevated temperatures based on isochronous stress-strain curve and the elastic-perfectly plastic material model through numerical analyses. Numerical results presented that the creep deformation is very sensitive to the target inelastic strain chosen for analysis. A small inelastic strain, corresponding to a small yield stress, can cause very conservative result for the case studied. Moreover, the target inelastic strain, corresponding to the minimum inelastic strain along with the given path, is different from each other for various internal pressures.


1977 ◽  
Vol 9 (6) ◽  
pp. 704-707 ◽  
Author(s):  
V. K. Babich ◽  
V. A. Pirogov ◽  
I. A. Vakulenko

Author(s):  
Quan Hoang Tran ◽  
Daniel Truong ◽  
K. T. Truong

Abstract In vessel component design by analysis, two failure modes are routinely investigated: Protection against plastic collapse and Protection against local failure. In elevated temperature service, creep rupture stress is the basis for elastic numerical analysis for establishing compliance with protection against the first failure mode. When compliance is not met, Elastic Perfectly Plastic (EPP) being a more accurate tool is proposed to verify the design using a factored rupture-based stress as yield (Sy = 1.25S). It seems that related work about adjusted yield stress has not been presented and validations are still needed using ASME VIII-2, part 5 combined load factor. Regarding local failure, an isochronous stress-strain curve has been used to determine the final stage strain for a total time duration, and compare to limits set by ASME III-NH. Code case 861 is also used to evaluate the minimum total inelastic strain and its conservativeness compared to the isochronous stress-strain curve approach.


Author(s):  
James D. Hart ◽  
Nasir Zulfiqar ◽  
Joe Zhou

Buried pipelines can be exposed to displacement-controlled environmental loadings (such as landslides, earthquake fault movements, etc.) which impose deformation demands on the pipeline. When analyzing pipelines for these load scenarios, the deformation demands are typically characterized based on the curvature and/or the longitudinal tension and compression strain response of the pipe. The term “strain demand” is used herein to characterize the calculated longitudinal strain response of a pipeline subject to environmentally-induced deformation demands. The shape of the pipe steel stress-strain relationship can have a significant effect on the pipe strain demands computed using pipeline deformation analyses for displacement-controlled loading conditions. In general, with sufficient levels of imposed deformation demand, a pipe steel stress-strain curve with a relatively abrupt or “sharp” elastic-to-plastic transition will tend to lead to larger strain demands than a stress-strain curve with a relatively rounded elastic-to-plastic transition. Similarly, a stress-strain curve with relatively low strain hardening modulus characteristics will tend to lead to larger strain demands than a stress-strain curve with relatively high strain hardening modulus characteristics. High strength UOE pipe can exhibit significant levels of anisotropy (i.e., the shapes of the stress-strain relationships in the longitudinal tension/compression and hoop tension/compression directions can be significantly different). To the extent that the stress-strain curves in the different directions can have unfavorable shape characteristics, it follows that anisotropy can also play an important role in pipeline strain demand evaluations. This paper summarizes a pipeline industry research project aimed at evaluation of the effects of anisotropy and the shape of pipe steel stress-strain relationships on pipeline strain demand for X80 and X100 UOE pipe. The research included: a review of pipeline industry literature on the subject matter; a discussion of pipe steel plasticity concepts for UOE pipe; characterization of the anisotropy and stress-strain curve shapes for both conventional and high strain pipe steels; development of representative analytical X80 and X100 stress-strain relationships; and evaluation of a large matrix of ground-movement induced pipeline deformation scenarios to evaluate key pipe stress-strain relationship shape and anisotropy parameters. The main conclusion from this work is that pipe steel specifications for high strength UOE pipe for strain-based design applications should be supplemented to consider shape-characterizing parameters such as the plastic complementary energy.


2020 ◽  
Vol 35 ◽  
pp. 1-8
Author(s):  
Hua Qian Ang

The tensile deformation behaviour of magnesium alloy AE44 (Mg-4Al-4RE) under strain rates ranging from 10-6 to 10-1 s-1 has been investigated. Present study shows that the deformation mode begins with the activation of elastic (Stage 1), followed by <a> basal slip and twinning (Stage 2), <a> prismatic slip (Stage 3) and finally to <c+a> pyramidal slip (Stage 4). The commencement of these deformation mechanisms results in four distinct stages of strain hardening in the stress-strain curve. In this work, the four stages of deformation behaviour are modelled, and an empirical equation is proposed to predict the entire stress-strain curve. Overall, the model predictions are in good agreement with the experimental data. This study on the decomposition of stress-strain curve into four stages provides insights into the contribution of individual deformation mechanism to the overall deformation behaviour and opens a new way to assess mechanical properties of die-cast magnesium alloys.


2014 ◽  
Vol 597 ◽  
pp. 17-20
Author(s):  
Ikuo Ihara ◽  
Kohei Ohtsuki ◽  
Iwao Matsuya

A nanoindentation technique with a spherical indenter of tip radius 10 μm is applied to the evaluation of stress-strain curve at a local area of a pure iron under the uniaxial compressive stress exerted through the iron, and the influence of the compressive stress on the estimated stress-strain curve has been examined. A continuous multiple loading method is employed to determine the stress-strain curve. In the method, a set of 21 times of loading/unloading sequences with increasing terminal load are made and load-displacement curves with the different terminal loads from 0.1 mN to 100 mN are then continuously obtained and converted to a stress-strain curve. To examine the stress dependence of the stress-strain curve, the estimation by the nanoindentetion is performed under different uniaxial compressive stresses up to 250 MPa. It has been found that the stress-strain curve determined by the nanoindentation shifts upward as the compressive stress increases and the quantity of the shift is almost equal to the uniaxial stress acting on the iron specimen. It is also noted that the yield stress (0.2 % proof stress) estimated from the stress-strain curve increases almost proportionally to the uniaxial stress and the increase ratio tends to decrease as the stress reaches around 200 MPa.


Sign in / Sign up

Export Citation Format

Share Document