Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory

2014 ◽  
Vol 60 ◽  
pp. 227-238 ◽  
Author(s):  
P. Phung-Van ◽  
Chien H. Thai ◽  
T. Nguyen-Thoi ◽  
H. Nguyen-Xuan
Author(s):  
Tran Huu Quoc ◽  
Tran Minh Tu ◽  
Vu Van Tham

This paper deals with the free vibration and dynamic responses of composite sandwich plates. The sandwich plate has three layers in which two face sheets are made of isotropic material, and the core layer is made of auxetic honeycomb structures with a negative Poisson's ratio.  A smoothed finite element model based on the first-order shear deformation theory is established for the analysis purpose. In the model, only the linear approximation is necessary, and the discrete shear gap method for triangular plate elements is used to avoid the shear locking. The Newmark direct integration technique is used to capture the dynamic responses of the sandwich plates. The convergence study is made, and the accuracy of present results is validated by comparison with available data in the literature. The influence of geometrical parameters, material properties, and boundary conditions are explored and discussed. Numerical results show that auxetic materials have several different responses compared to conventional materials, and these behaviors are strongly influenced by the internal structure of the auxetic material.


2019 ◽  
Vol 16 (04) ◽  
pp. 1850102 ◽  
Author(s):  
T. Nguyen-Quoc ◽  
S. Nguyen-Hoai ◽  
D. Mai-Duc

In this paper, an edge-based smoothed stabilized discrete shear gap method (ES-DSG) is integrated with the C0-type high-order shear deformation plate theory (C0-HSDT) for free vibration and static analyses of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. The material properties of FG-CNTRC are assumed to be graded through the thickness direction according to several distributions of the volume fraction of carbon nanotubes (CNTs). The stiffness formulation of the ES-DSG based on C0-HSDT is performed by using the strain smoothing technique over the smoothing domains associated with edges of elements. This hence does not require shear correction factors. The accuracy and reliability of the proposed method are confirmed in several numerical examples.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850056 ◽  
Author(s):  
T. Nguyen-Thoi ◽  
T. Bui-Xuan ◽  
G. R. Liu ◽  
T. Vo-Duy

A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using three-node triangular element was recently proposed for static, free vibration and buckling analyses of stiffened Mindlin plates. The CS-FEM-DSG3 element is a significant improvement of the original DSG3 element by using smoothing technique to soften the stiffness of the DSG3 element while it has still inherited the locking-free feature of the former. In this paper, the CS-FEM-DSG3 is further extended for the static and free vibration analyses of stiffened flat shells by combining the original plate element CS-FEM-DSG3 with Allman’s plane stress element and a linearly isotropic two-node stiffened beam element. The compatibility of displacement field of stiffeners and shell is applied at the contact positions. Numerical results of the proposed element are compared with those of some existing methods to demonstrate the accuracy and reliability of the proposed method.


2018 ◽  
Vol 1 (T5) ◽  
pp. 214-221 ◽  
Author(s):  
Thang Xuan Bui ◽  
Hau Trung Dang

In this paper, the static and free vibration analyses of the sandwich folded plate modeled by layer-wise (LW) theory are studied. In the theory, the continuity displacement condition is imposed at the layer’s interfaces. Each layer of the plate is modeled by the first-order shear deformation theory (FSDT). The numerical solutions are obtained by using the cellbased smoothed discrete shear gap method (CS-DSG3). Some examples are implemented to demonstrate the accuracy of the LW theory for the sandwich folded plate analyses.


2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Yadong Xu ◽  
Guangsong Chen ◽  
Jinsong Tang

In this paper, a gradient stable node-based smoothed discrete shear gap method (GS-DSG) using 3-node triangular elements is presented for Reissner–Mindlin plates in elastic-static, free vibration, and buckling analyses fields. By applying the smoothed Galerkin weak form, the discretized system equations are obtained. In order to carry out the smoothing operation and numerical integration, the smoothing domain associated with each node is defined. The modified smoothed strain with gradient information is derived from the Hu–Washizu three-field variational principle, resulting in the stabilization terms in the system equations. The stabilized discrete shear gap method is also applied to avoid transverse shear-locking problem. Several numerical examples are provided to illustrate the accuracy and effectiveness. The results demonstrate that the presented method is free of shear locking and can overcome the temporal instability issues, simultaneously obtaining excellent solutions.


Sign in / Sign up

Export Citation Format

Share Document