The influence of the normal strain effect on the control and design optimization of functionally graded plates

2015 ◽  
Vol 77 ◽  
pp. 440-453 ◽  
Author(s):  
M.E. Fares ◽  
M.Kh. Elmarghany ◽  
Doaa Atta
Author(s):  
F. Alijani ◽  
M. Amabili

Nonlinear vibrations of moderately thick functionally graded (FG) rectangular plates are investigated by considering a higher-order shear deformation theory that takes into account the thickness deformation effect. The geometrically nonlinear strain-displacement relationships are derived retaining full non-linear terms in the in-plane and transverse displacements and the three-dimensional constitutive equations are used by removing the assumption of zero transverse normal strain. The plate is assumed to have immovable boundary conditions at the edges. The equations of motion are obtained by using multi-modal energy approach. A code based on pseudo arc-length continuation and collocation scheme is utilized for numerical continuation and bifurcation analysis. Results show that higher-order thickness deformation theories yield a significant accuracy improvement for nonlinear vibrations of highly pressurized functionally graded plates.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
M. E. Fares ◽  
M. Kh. Elmarghany ◽  
Doaa Atta

A control optimization problem for functionally graded (FG) plates is presented using a first-order shear deformation plate theory including through-the-thickness normal strain effect. The aim of the optimization is to minimize the vibrational response of FG plate with constraints on the control energy used in the damping process. An active control optimization is presented to determine the optimal level of a closed loop control function. Plate thickness and a homogeneity parameter of FG plates are used as design variables. Numerical results for the optimal control force and the total energy for a simply supported FG plate are given. The influence of through-the-thickness normal strain effect on the accuracy of the obtained results is illustrated. The effectiveness of the present control and design procedure is examined.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document