Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates

2016 ◽  
Vol 96 ◽  
pp. 173-203 ◽  
Author(s):  
Nicholas Fantuzzi ◽  
Francesco Tornabene
2013 ◽  
Vol 104 ◽  
pp. 196-214 ◽  
Author(s):  
Chien H. Thai ◽  
A.J.M. Ferreira ◽  
E. Carrera ◽  
H. Nguyen-Xuan

2018 ◽  
Vol 18 (05) ◽  
pp. 1850070 ◽  
Author(s):  
S. Faroughi ◽  
E. Shafei ◽  
D. Schillinger

We present a computational study that develops isogeometric analysis based on higher-order smooth NURBS basis functions for the analysis of in-plane laminated composites. Focusing on the stress, vibration and stability analysis of angle-ply and cross-ply 2D structures, we compare the convergence of the strain energy error and selected stress components, eigen-frequencies and buckling loads according to overkill solutions. Our results clearly demonstrate that for in-plane laminated composite structures, isogeometric analysis is able to provide the same accuracy at a significantly reduced number of degrees of freedom with respect to standard [Formula: see text] finite elements. In particular, we observe that the smoothness of spline basis functions enables high-quality stress solutions, which are superior to the ones obtained with conventional finite elements.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Natarajan ◽  
A.J.M. Ferreira ◽  
Hung Nguyen-Xuan

AbstractIn this paper, we study the static bending and free vibration of cross-ply laminated composite plates using sinusoidal deformation theory. The plate kinematics is based on the recently proposed Carrera Unified Formulation (CUF), and the field variables are discretized with the non-uniform rational B-splines within the framework of isogeometric analysis (IGA). The proposed approach allows the construction of higher-order smooth functions with less computational effort.Moreover, within the framework of IGA, the geometry is represented exactly by the Non-Uniform Rational B-Splines (NURBS) and the isoparametric concept is used to define the field variables. On the other hand, the CUF allows for a systematic study of two dimensional plate formulations. The combination of the IGA with the CUF allows for a very accurate prediction of the field variables. The static bending and free vibration of thin and moderately thick laminated plates are studied. The present approach also suffers fromshear locking when lower order functions are employed and shear locking is suppressed by introducing a modification factor. The effectiveness of the formulation is demonstrated through numerical examples.


Sign in / Sign up

Export Citation Format

Share Document