Evaluation of carbon fiber composite repairs using asymmetric-frequency ultrasound waves

2020 ◽  
Vol 181 ◽  
pp. 107534 ◽  
Author(s):  
Feifei Liu ◽  
Zhenggan Zhou ◽  
Songping Liu ◽  
Yusen Yang ◽  
Lianwang Zhang
Author(s):  
Timothy S. Mally ◽  
Amanda P. Hawkins ◽  
Roger H. Walker ◽  
Michael W. Keller

Uninhibited internal corrosion can create several different types of through-wall defects in pipelines. Circular holes, axial slots, and circumferential slots are three potential leaking situations that can develop as corrosion occurs internally on different piping systems. Theoretically, each defect can be repaired by a composite repair system in accordance with design equations given in the ASME PCC-2 Article 4.1 and ISO 24817 nonmetallic repair standards, however, empirical analyses for these types of through-wall defects do not always hold true in test environments. In this work, design equations were analyzed according to ASME PCC-2 Article 4.1 and ISO 24817 for a specific carbon fiber composite repair system on specific defect sizes and configurations. Test spools of different geometries were fabricated with circular holes, axial slots, and circumferential slots of pre-determined dimensions. A carbon fiber reinforced epoxy composite system was installed and hydro-tested over the three different defect types and the results are compared to the standard design equations. It was determined that although the ASME and ISO equations were conservative enough to predict significantly lower failure pressures for these repairs, the current models can almost be considered overly conservative and not accurately modeling the actual failure mechanism occurring in these types defects repaired with composite repairs.


2008 ◽  
Author(s):  
Andrew Littlefield ◽  
Edward Hyland ◽  
Jack Keating

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1319 ◽  
Author(s):  
Ran Li ◽  
Huiping Lin ◽  
Piao Lan ◽  
Jie Gao ◽  
Yan Huang ◽  
...  

Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).


Sign in / Sign up

Export Citation Format

Share Document